
Evaluating parametric holonomic sequences using
rectangular splitting

Fredrik Johansson
∗

RISC
Johannes Kepler University

4040 Linz, Austria

fredrik.johansson@risc.jku.at

ABSTRACT
We adapt the rectangular splitting technique of Paterson
and Stockmeyer to the problem of evaluating terms in holo-
nomic sequences that depend on a parameter. This approach
allows computing the n-th term in a recurrent sequence of
suitable type using O(n1/2) “expensive” operations at the
cost of an increased number of “cheap” operations.

Rectangular splitting has little overhead and can perform
better than either naive evaluation or asymptotically faster
algorithms for ranges of n encountered in applications. As
an example, fast numerical evaluation of the gamma func-
tion is investigated. Our work generalizes two previous al-
gorithms of Smith.

Categories and Subject Descriptors
I.1.2 [Computing Methodologies]: Symbolic and Alge-
braic Manipulation—Algorithms; F.2.1 [Theory of Com-
putation]: Analysis of Algorithms and Problem Complex-
ity—Numerical Algorithms and Problems

General Terms
Algorithms

Keywords
Linearly recurrent sequences, Numerical evaluation, Fast arith-
metic, Hypergeometric functions, Gamma function

1. INTRODUCTION
A sequence (c(i))∞i=0 is called holonomic (or P-finite) of

order r if it satisfies a linear recurrence equation

ar(i)c(i+ r) + ar−1(i)c(i+ r − 1) + . . .+ a0(i)c(i) = 0 (1)

∗Supported by the Austrian Science Fund (FWF) grant
Y464-N18.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this workowned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
ISSAC ’14, July 23–25, 2014, Kobe, Japan.
Copyright 2014 ACM 978-1-4503-2501-1/14/07 ...$15.00.
http://dx.doi.org/10.1145/2608628.2608629.

where a0, . . . , ar are polynomials. The class of holonomic se-
quences enjoys many useful closure properties: for example,
holonomic sequences form a ring, and if c(i) is holonomic
then so is the sequence of partial sums s(n) =

∑n
i=0 c(i).

A sequence is called hypergeometric if it is holonomic of or-
der r = 1. The sequence of partial sums of a hypergeometric
sequence is holonomic of order (at most) r = 2.

Many integer and polynomial sequences of interest in num-
ber theory and combinatorics are holonomic, and the power
series expansions of many well-known special functions (such
as the error function and Bessel functions) are holonomic.

We are interested in efficient algorithms for evaluating an
isolated term c(n) in a holonomic sequence when n is large.
Section 2 recalls the well-known techniques of rewriting (1)
in matrix form and applying binary splitting, which gives a
near-optimal asymptotic speedup for certain types of coef-
ficients, or fast multipoint evaluation which in the general
case is the asymptotically fastest known algorithm.

In section 3, we give an algorithm (Algorithm 3) which
becomes efficient when the recurrence equation involves an
“expensive” parameter (in a sense which is made precise),
based on the baby-step giant-step technique of Paterson and
Stockmeyer [12] (called rectangular splitting in [5]).

Our algorithm can be viewed as a generalization of the
method given by Smith in [14] for computing rising factori-
als. Conceptually, it also generalizes an algorithm given by
Smith in [13] for evaluation of hypergeometric series. Our
contribution is to recognize that rectangular splitting can be
applied systematically to a very general class of sequences,
and in an efficient way (we provide a detailed cost analysis,
noting that some care is required in the construction of the
algorithm to get optimal performance).

The main intended application of rectangular splitting
is high-precision numerical evaluation of special functions,
where the parameter is a real or complex number (repre-
sented by a floating-point approximation), as discussed fur-
ther in section 4. Although rectangular splitting is asymp-
totically slower than fast multipoint evaluation, it is com-
petitive in practice. In section 5, we present implementation
results comparing several different algorithms for numerical
evaluation of the gamma function to very high precision.

2. MATRIX ALGORITHMS
Let R be a commutative ring with unity and of sufficiently

large characteristic where necessary. Consider a sequence of
length-r vectors (c(i) = (c1(i), . . . , cr(i))

T)∞i=0 satisfying a

recurrence equation of the form

c1(i+ 1)
...

cr(i+ 1)

 = M(i)

c1(i)
...

cr(i)

 (2)

where M ∈ R[k]r×r (or Quot(R)(k)r×r) and where M(i)
denotes entrywise evaluation. Given an initial vector c(0),
we wish to evaluate the single vector c(n) for some n > 0,
where we assume that no denominator in M vanishes for 0 ≤
i < n. A scalar recurrence of the form (1) can be rewritten as
(2) by taking the vector to be c̃(i) = (c(i), . . . , c(i+ r− 1))T

and setting M to the companion matrix

M =
1

ar

ar

. . .

ar

−a0 −a1 . . . −ar−1

. (3)

Through repeated application of the recurrence equation,
c(n) can be evaluated usingO(r2n) arithmetic operations (or
O(rn) if M is companion) and temporary storage of O(r)
values. We call this strategy the naive algorithm.

The naive algorithm is not generally optimal for large n.
The idea behind faster algorithms is to first compute the
matrix product

P (0, n) =

n−1∏

i=0

M(i). (4)

and then multiply it by the vector of initial values (matrix
multiplication is of course noncommutative, and through-
out this paper the notation in (4) is understood to mean
M(n − 1) . . .M(2)M(1)M(0)). If the product is done it-
eratively, this increases the cost to O(rωn) arithmetic op-
erations where ω is the exponent of matrix multiplication,
but we can save time for large n by exploiting the structure
of the matrix product. The improvement is most dramatic
when all matrix entries are constant, allowing binary expo-
nentiation (with O(log n) complexity) or diagonalization to
be used, although this is a rather special case. We assume
in the remainder of this work that r is fixed, and omit O(rω)
factors from any complexity estimates.

From this point, we may view the problem as that of
evaluating (4) for some M ∈ R[k]r×r. It is not a restric-
tion to demand that the entries of M are polynomials: if
M = M̃/q, we can write P (0, n) = P̃ (0, n)/Q(0, n) where

P̃ (0, n) =
∏n−1

i=0 q(i)M̃(i) and Q(0, n) =
∏n−1

i=0 q(i). This re-
duces the problem to evaluating two denominator-free prod-
ucts, where the second product has order 1.

2.1 Binary splitting
In the binary splitting algorithm, we recursively compute

a product of square matrices P (a, b) =
∏b−1

i=a M(i) (where
the entries of M need not necessarily be polynomials of i),
as P (m, b)P (a,m) where m = ⌊(a+ b)/2⌋. If the entries of
partial products grow in size, this scheme balances the sizes
of the subproducts in a way that allows us to take advantage
of fast multiplication.

For example, take M(i) ∈ R[x]r×r where all M(i) have
bounded degree. Then P (a, b) has entries in R[x] of degree
O(b − a), and binary splitting can be shown to compute
P (0, n) using O(M(n) log n) operations in R where M(n)
is the complexity of polynomial multiplication, using O(n)

extra storage. Over a general ring R, we have M(n) =

O(n log1+o(1) n) by the result of [6], making the binary split-
ting softly optimal. This is a significant improvement over
the naive algorithm, which in general uses O(n2) coefficient
operations to generate the n-th entry in a holonomic se-
quence of polynomials.

Analogously, binary splitting reduces the bit complexity
for evaluating holonomic sequences over Z or Q (or more gen-

erally the algebraic numbers) from O(n2+o(1)) to O(n1+o(1)).
For further references and several applications of the binary
splitting technique, we refer to Bernstein [2].

2.2 Fast multipoint evaluation
The fast multipoint evaluation method is useful when all

arithmetic operations are assumed to have uniform cost.
Fast multipoint evaluation allows evaluating a polynomial
of degree d simultaneously at d points using O(M(d) log d)
operations and O(d log d) space. Applied to a polynomial
matrix product, we obtain Algorithm 1, which is due to
Chudnovsky and Chudnovsky [7].

Algorithm 1 Polynomial matrix product using fast multi-
point evaluation

Input: M ∈ R[k]r×r, n = m× w
Output:

∏n−1
i=0 M(i)

1: [T0, . . . , Tm−1]← [M(k), . . . ,M(k +m− 1)]
⊲ Compute entrywise Taylor shifts of the matrix

2: U ←∏m−1
i=0 Ti ⊲ Binary splitting in R[k]r×r

3: [V0, . . . , Vw−1]← [U(0), U(m), . . . , U((w − 1)m)]
⊲ Fast multipoint evaluation

4: return
∏w−1

i=0 Vi ⊲ Repeated multiplication in Rr×r

We assume for simplicity of presentation that n is a multi-
ple of the parameter m (in general, we can take w = ⌊n/m⌋
and multiply by the remaining factors naively). Taking

m ∼ n1/2, Algorithm 1 requires O(M(n1/2) log n) arith-

metic operations in the ring R, using O(n1/2 log n) tem-
porary storage during the fast multipoint evaluation step.
Bostan, Gaudry and Schost [4] improve the algorithm to

obtain an O(M(n1/2)) operation bound, which is the best
available result for evaluating the n-th term of a holonomic
sequence over a general ring. Algorithm 1 and some of its
applications are studied further by Ziegler [19].

3. RECTANGULAR SPLITTING FOR
PARAMETRIC SEQUENCES

We now consider holonomic sequences whose recurrence
equation involves coefficients from a commutative ring C
with unity as well as an additional, distinguished parame-
ter x. The setting is as in the previous section, but with
R = C[x]. In other words, we are considering holonomic
sequences of polynomials (or, by clearing denominators, ra-
tional functions) of the parameter. We make the following
definition.

Definition 1. A holonomic sequence (c(n) ≡ c(x, n))∞n=0

is parametric over C (with parameter x) if it satisfies a lin-
ear recurrence equation of the form (2) with M ∈ R[k] where
R = C[x].

Let H be a commutative C-algebra, and let c(x, k) be
a parametric holonomic sequence defined by a recurrence

matrix M ∈ C[x][k]r×r and an initial vector c(z, 0) ∈ Hr.
Given some z ∈ H and n ∈ N, we wish to compute the single
vector c(z, n) ∈ Hr efficiently subject to the assumption that
operations in H are expensive compared to operations in C.
Accordingly, we distinguish between:

• Coefficient operations in C

• Scalar operations in H (additions in H and multipli-
cations C ×H → H)

• Nonscalar multiplications H ×H → H

For example, the sequence of rising factorials

c(x, n) = xn = x(x+ 1) · · · (x+ n− 1)

is first-order holonomic (hypergeometric) with the defining
recurrence equation c(x, n + 1) = (n + x)c(x,n), and para-
metric over C = Z. In some applications, we wish to evalu-
ate c(z, n) for z ∈ H where H = R or H = C.

The Paterson-Stockmeyer algorithm [12] solves the prob-
lem of evaluating a polynomial P (x) =

∑n−1
i=0 pix

i with
pi ∈ C at x = z ∈ H using a reduced number of non-
scalar multiplications. The idea is to write the polynomial
as a rectangular array

P (x) = (p0 + . . .+ pm−1x
m−1)

+ (pm + . . .+ p2m−1x
m−1)xm

+ (p2m + . . .+ p3m−1x
m−1)x2m

+ . . .

(5)

After computing a table containing x2, x3, . . . , xm−1, the
inner (rowwise) evaluations can be done using only scalar
multiplications, and the outer (columnwise) evaluation with
respect to xm can be done using about n/m nonscalar multi-

plications. With m ∼ n1/2, this algorithm requires O(n1/2)
nonscalar multiplications and O(n) scalar operations.

A straightforward application of the Paterson-Stockmeyer
algorithm to evaluate each entry of

∏n−1
i=0 M(x, i) ∈ C[x]r×r

yields Algorithm 2 and the corresponding complexity esti-
mate of Theorem 2.

Algorithm 2 Polynomial matrix product and evaluation
using rectangular splitting

Input: M ∈ C[x][k]r×r , z ∈ H , n = m× w
Output:

∏n−1
i=0 M(z, i) ∈ Hr×r

1: [T0, . . . , Tn−1]← [M(x, 0), . . . ,M(x,n− 1)]
⊲ Evaluate matrix w.r.t. k, giving Ti ∈ C[x]r×r

2: U ← ∏n−1
i=0 Ti ⊲ Binary splitting in C[x]r×r

3: V ← U(z)
⊲ Evaluate U entrywise using Paterson-Stockmeyer

with step length m
4: return V

Theorem 2. The n-th entry in a parametric holonomic
sequence can be evaluated using O(n1/2) nonscalar multipli-
cations, O(n) scalar operations, and O(M(n) log n) coeffi-
cient operations.

Proof. We call Algorithm 2 with m ∼ n1/2. Letting d =
max degk M and e = max degx M , computing T0, . . . , Tn−1

takes O(nde) = O(n) coefficient operations. As degx Ti ≤ e,

generating U using binary splitting costs O(M(n) log n) co-
efficient operations. Each entry in U has degree at most
ne = O(n), and can thus be evaluated using O(n1/2) non-
scalar multiplications and O(n) scalar operations with the
Paterson-Stockmeyer algorithm.

If we only count nonscalar multiplications, Theorem 2
is an asymptotic improvement over fast multipoint evalu-
ation which uses O(n1/2 log2+o(1) n) nonscalar multiplica-

tions (O(n1/2 log1+o(1) n) with the improvement of Bostan,
Gaudry and Schost).

Algorithm 2 is not ideal in practice since the polynomials
in U grow to degree O(n). Their coefficients also grow to
O(n log n) bits when C = Z (for example, in the case of ris-
ing factorials, the coefficients are the Stirling numbers of the
first kind S(n, k) which grow to a magnitude between (n−1)!
and n!). This problem can be mitigated by repeatedly ap-

plying Algorithm 2 to successive subproducts
∏a+ñ

i=a M(z, i)
where ñ≪ n, but the nonscalar complexity is then no longer
the best possible. A better strategy is to apply rectangu-
lar splitting to the matrix product itself, leading to Algo-
rithm 3. We can then reach the same operation complexity
while only working with polynomials of degree O(n1/2), and

over C = Z, having coefficients of bit size O(n1/2 log n).

Theorem 3. For any choice of m, Algorithm 3 requires
O(m + n/m) nonscalar multiplications, O(n) scalar opera-
tions, and O((n/m)M(m) logm) coefficient operations. In
particular, the complexity bounds stated in Theorem 2 also
hold for Algorithm 3 with m ∼ n1/2. Moreover, Algorithm 3
only requires storage of O(m) elements of C and H, and if
C = Z, the coefficients have bit size O(m log n).

Proof. This follows by applying a similar argument as
used in the proof of Theorem 2 to the operations in the
inner loop of Algorithm 3, noting that U has entries of de-
gree mdegx M = O(m) and that the matrix multiplication
S × V requires O(1) nonscalar multiplications and scalar
operations (recalling that we consider r fixed).

Algorithm 3 Improved polynomial matrix product and
evaluation using rectangular splitting

Input: M ∈ C[x][k]r×r, z ∈ H , n = m× w
Output:

∏n−1
i=0 M(z, i) ∈ Hr×r

1: Compute power table [zj , 0 ≤ j ≤ m degx M]
2: V ← 1Hr×r ⊲ Start with the identity matrix
3: for i← 0 to w − 1 do
4: [T0, . . . , Tm−1]← [M(x, im+ j)]m−1

j=0

⊲ Evaluate matrix w.r.t. k, giving Tj ∈ C[x]r×r

5: U ←∏m−1
j=0 Tj ⊲ Binary splitting in C[x]r×r

6: S ← U(z) ⊲ Evaluate w.r.t. x using power table
7: V ← S × V ⊲ Multiplication in Hr×r

8: return V

3.1 Variations
Many variations of Algorithm 3 are possible. Instead of

using binary splitting directly to compute U , we can gener-
ate the bivariate matrix

Wm =

m−1∏

i=0

M(x, k + i) ∈ C[x][k]r×r (6)

at the start of the algorithm, and then obtain U by evalu-
ating Wm at k = im. We may also work with differences of
two successive U (for small m, this can introduce cancella-
tion resulting in slightly smaller polynomials or coefficients).
Combining both variations, we end up with Algorithm 4 in
which we expand and evaluate the bivariate polynomial ma-
trices

∆m =

m−1∏

i=0

M(x, k +m+ i)−
m−1∏

i=0

M(x, k + i) ∈ C[x][k]r×r .

This version of the rectangular splitting algorithm can be
viewed as a generalization of an algorithm used by Smith
[14] for computing rising factorials (we consider the case of
rising factorials further in Section 5.1). In fact, the author
of the present paper first found Algorithm 4 by generalizing
Smith’s algorithm, and only later discovered Algorithm 3 by
“interpolation” between Algorithm 2 and Algorithm 4.

Algorithm 4 Polynomial matrix product and evaluation
using rectangular splitting (variation)

Input: M ∈ C[x][k]r×r , z ∈ H , n = m× w
Output:

∏n−1
i=0 M(z, i) ∈ Hr×r

1: Compute power table [zj , 0 ≤ j ≤ m degx M]
2: ∆←∏m−1

i=0 M(x, k +m+ i)−∏m−1
i=0 M(x, k + i)

⊲ Binary splitting in C[x][k]r×r

3: V ← S ←∏m−1
i=0 M(z, i)

⊲ Evaluate w.r.t. k, and w.r.t. x using power table
4: for i← 0 to w − 2 do
5: S ← S +∆(z,mi)

⊲ Evaluate w.r.t. k, and w.r.t. x using power table
6: V ← S × V

7: return V

The efficiency of Algorithm 4 is theoretically somewhat
worse than that of Algorithm 3. Since degx Wm = O(m)
and degk Wm = O(m), Wm has O(m2) terms (likewise for
∆m), making the space complexity higher and increasing
the number of coefficient operations to O((n/m)m2) for the
evaluations with respect to k. However, this added cost
may be negligible in practice. Crucially, when C = Z, the
coefficients have similar bit sizes as in Algorithm 3.

Initially generating Wm or ∆m also adds some cost, but
this is cheap compared to the evaluations when n is large
enough: binary splitting over C[x][k] costs O(M(m2) logm)
coefficient operations by Lemma 8.2 and Corollary 8.28 in
[18]. This is essentially the same as the total cost of binary

splitting in Algorithm 3 when m ∼ n1/2.
We also note that a small improvement to Algorithm 3

is possible if M(x, k + m) = M(x + m, k): instead of com-
puting U from scratch using binary splitting in each loop
iteration, we can update it using a Taylor shift. At least in
sufficiently large characteristic, the Taylor shift can be com-
puted using O(M(m)) coefficient operations with the convo-
lution algorithm of Aho, Steiglitz and Ullman [1], saving a
factor O(log n) in the total number of coefficient operations.
In practice, basecase Taylor shift algorithms may also be
beneficial (see [17]).

In lucky cases, the polynomial coefficients (in either Al-
gorithm 3 or 4) might satisfy a recurrence relation, allowing
them to be generated using O(n) coefficient operations (and
avoiding the dependency on polynomial arithmetic).

3.2 Several parameters
The rectangular splitting technique can be generalized to

sequences c(x1, . . . , xv, k) depending on several parameters.
In Algorithm 3, we simply replace the power table by a v-
dimensional array of the possible monomial combinations.
Then we have the following result (ignoring coefficient oper-
ations).

Theorem 4. The n-th entry in a holonomic sequence de-
pending on v parameters can be evaluated with rectangu-
lar splitting using O(mv + n/m) nonscalar multiplications
and O((n/m)mv) scalar multiplications. In particular, tak-

ing m = n1/(v+1), O(nv/(1+v)) nonscalar multiplications and

O(n2v/(1+v)) scalar multiplications suffice.

Proof. If di = degxi
M ≤ d, the entries of a product

of m successive shifts of M are C-linear combinations of
x
e1,j
1 · · · xev,j

h , 0 ≤ ei,j ≤ mdi ≤ md, so there is a total of
O(mv) powers.

Unfortunately, this gives rapidly diminishing returns for
large v. When v > 1, the number of nonscalar multiplica-
tions according to Theorem 4 is asymptotically worse than
with fast multipoint evaluation, and reducing the number of
nonscalar multiplication requires us to perform more than
O(n) scalar multiplications, as shown in Table 1. Never-
theless, rectangular splitting could perhaps still be useful in
some settings where the cost of nonscalar multiplications is
sufficiently large.

v m Nonscalar Scalar

1 n1/2 O(n0.5) O(n)

2 n1/3 O(n0.666...) O(n1.333...)

3 n1/4 O(n0.75) O(n1.5)

4 n1/5 O(n0.8) O(n1.6)

Table 1: Step size m minimizing the number of non-
scalar multiplications for rectangular splitting in-
volving v parameters.

4. NUMERICAL EVALUATION
Assume that we want to evaluate c(x, n) where the under-

lying coefficient ring is C = Z (or Q) and the parameter x
is a real or complex number represented by a floating-point
approximation with a precision of p bits.

Let MZ(p) = Õ(pβ) denote the bit complexity of some al-
gorithm for multiplying two p-bit integers or floating-point
numbers. We have β = 2 with classical multiplication,
β = 1.585 with Karatsuba multiplication, and β = 1 with
algorithms based on the Fast Fourier Transform (FFT). An
unbalanced multiplication where the smaller operand has q
bits can be done using O((p/q)MZ(q)) bit operations [5].

The naive algorithm clearly uses O(nMZ(p)) bit opera-

tions to evaluate c(x, n), or Õ(np) with FFT multiplication.
The bit complexity of Algorithm 3 in this setting can be

bounded using Theorem 3:

• Coefficient operations cost Õ(mn), since we perform

Õ(n) operations with coefficients up to Õ(m) bits in
size (assuming use of fast polynomial arithmetic).

• Scalar operations cost

O

(

n p
MZ(m log n)

m log n

)

,

since we perform O(n) unbalanced multiplications with
numbers O(p) and O(m log n) bits in size.

• Nonscalar operations cost O((m+ n/m)MZ(p)).

Taking m ∼ nα for 0 < α < 1, the bit complexity becomes

Õ(n1+α)
︸ ︷︷ ︸

Coefficient

+ Õ(n1+αβ−αp)
︸ ︷︷ ︸

Scalar

+ Õ((nα + n1−α)pβ)
︸ ︷︷ ︸

Nonscalar

.

If p grows sufficiently rapidly along with n, and α is cho-
sen optimally, we see that Algorithm 3 gives an asymptotic
speedup when β > 1, e.g. with classical or Karatsuba mul-
tiplication. In particular, if p ∼ n, choosing α = (β − 1)/β

gives a bit complexity of Õ(nβ+1/β) compared to Õ(nβ+1)
for the naive algorithm.

With FFT multiplication (β = 1), the scalar multipli-
cations become as expensive as the nonscalar multiplica-
tions, and the complexity of rectangular splitting is there-
fore Õ(np) just like the naive algorithm. However, we can
expect to save a constant factor due to the overhead of FFT
multiplication. To a good approximation, p-bit balanced
multiplication in the FFT range is C times more expensive
than p-by-64-bit multiplication for some constant C. If the
scalar multiplications are done using classical multiplication
(where the coefficients have m log n . 64m bits), we can
model the cost of rectangular splitting as

nmp
︸ ︷︷ ︸

Scalar

+C (m+ n/m) p
︸ ︷︷ ︸

Nonscalar

versus Cnp for the naive algorithm. Taking m ≈
√
C, we

get a speedup of order
√
C. The GMP and MPIR libraries

have C ≈ 500 on present 64-bit hardware, indicating that
Algorithm 3 allows a constant factor speedup of at least one
order of magnitude at extremely high precision.

This analysis is obviously very crude, and the optimal
value for m has to be determined empirically in practice.

Algorithm 1 is asymptotically faster than the naive algo-
rithm as well as rectangular splitting, with a bit complexity
of Õ(n1/2p). It should be noted that this estimate does not
reflect the complexity required to obtain a given accuracy.
As observed by Köhler and Ziegler [10], fast multipoint eval-
uation can exhibit poor numerical stability, suggesting that p
might have to grow at least as fast as n to get accuracy pro-
portional to p.

When x and all coefficients in M are positive, rectangular
splitting introduces no subtractions that can cause catas-
trophic cancellation, and the reduction of nonscalar mul-
tiplications even improves stability compared to the naive
algorithm, making O(log n) guard bits sufficient to reach
p-bit accuracy. When sign changes are present, evaluating
degree-m polynomials in expanded form can reduce accu-
racy, typically requiring use of Õ(m) guard bits. In this case
Algorithm 3 is a marked improvement over Algorithm 2.

4.1 Summation of power series
A common situation is that we wish to evaluate a trun-

cated power series

f(x) ≈ s(x,n) =
n∑

k=0

c(k)xk, n = O(p) (7)

where c(k) is a holonomic sequence taking rational (or al-
gebraic) values and x is a p-bit real or complex number. In

this case the Paterson-Stockmeyer algorithm is applicable,
but might not give a speedup when applied directly as in Al-
gorithm 2 since the coefficients grow to O(p log p) bits. Since
d(k) = c(k)xk and s(x,n) are holonomic sequences with x
as parameter, Algorithm 3 is applicable.

Smith noted in [13] that when c(k) is hypergeometric
(Smith considered the Taylor expansions of elementary func-
tions in particular), the Paterson-Stockmeyer technique can
be combined with scalar divisions to remove accumulated
factors from the coefficients. This keeps all scalars at a size
of O(log n) bits, giving a speedup over naive evaluation when
non-FFT multiplication is used (and when scalar divisions
are assumed to be roughly as cheap as scalar multiplica-
tions). This algorithm is studied in more detail by Brent
and Zimmermann [5].

At least conceptually, Algorithm 3 can be viewed as a
generalization of Smith’s hypergeometric summation algo-
rithm to arbitrary holonomic sequences depending on a pa-
rameter (both algorithms can be viewed as means to elimi-
nate repeated content from the associated matrix product).
The speedup is not quite as good since we only reduce the
coefficients to O(n1/2 log n) bits versus Smith’s O(log n).
However, even for hypergeometric series, Algorithm 3 can
be slightly faster than Smith’s algorithm for small n (e.g.
n . 100) since divisions tend to be more expensive than
scalar multiplications in implementations.

Algorithm 3 is also more general: for example, we can use
it to evaluate the generalized hypergeometric function

pFq

(
a1, . . . , ap

b1, . . . , bq
w

)

=
∞∑

k=0

ak
1 · · · ak

p

bk1 · · · bkq
wk

k!
(8)

where ai, bi, w (as opposed to w alone) are rational functions
of the real or complex parameter x.

An interesting question, which we do not attempt to an-
swer here, is whether there is a larger class of parametric
sequences other than hypergeometric sequences and their
sums for which we can reduce the number of nonscalar mul-
tiplications to O(n1/2) while working with coefficients that

are strictly smaller than O(n1/2 log n) bits.

4.2 Comparison with asymptotically faster
algorithms

If all coefficients in (7) including the parameter x are ra-
tional or algebraic numbers and the series converges, f(x)

can be evaluated to p-bit precision using Õ(p) bit operations

using binary splitting. An Õ(p) bit complexity can also be
achieved for arbitrary real or complex x by combining bi-
nary splitting with translation of the differential equation
for f(x). The general version of this algorithm, sometimes
called the bit-burst algorithm, was developed by Chudnovsky
and Chudnovsky and independently with improvements by
van der Hoeven [15]. It is used in some form for evaluat-
ing elementary functions in several libraries, and a general
version has been implemented by Mezzarobba [11].

For high-precision evaluation of elementary functions, bi-
nary splitting typically only becomes worthwhile at a preci-
sion of several thousand digits, while implementations typi-
cally use Smith’s algorithm for summation of hypergeomet-
ric series at lower precision. We expect that Algorithm 3
can be used in a similar fashion for a wider class of special
functions.

When c(k) in (7) involves real or complex numbers, bi-
nary splitting no longer gives a speedup. In this case, we
can use Algorithm 1 to evaluate (7) using Õ(p1.5) bit op-
erations (Borwein [3] discusses the application to numerical
evaluation of hypergeometric functions). This method does
not appear to be widely used in practice, presumably owing
to its high overhead and relative implementation difficulty.
Although rectangular splitting is not as fast asymptotically,
its ease of implementation and low overhead makes it an
attractive alternative.

5. HIGH-PRECISION COMPUTATION OF
THE GAMMA FUNCTION

In this section, we consider two holonomic sequences de-
pending on a numerical parameter: rising factorials, and the
partial sums of a certain hypergeometric series defining the
incomplete gamma function. In both cases, our goal is to
accelerate numerical evaluation of the gamma function at
very high precision.

We have implemented the algorithms in the present sec-
tion using floating-point ball arithmetic (with rigorous error
bounding) as part of the Arb library [9]. All arithmetic in
Z[x] is done via FLINT [8], using a Schönhage-Strassen FFT
implemented by W. Hart.

Fast numerically stable multiplication in R[x] is done by
breaking polynomials into segments with similarly-sized co-
efficients and computing the subproducts exactly in Z[x] (a
simplified version of van der Hoeven’s block multiplication
algorithm [16]), and asymptotically fast polynomial division
is implemented using Newton iteration.

All benchmark results were obtained on a 2.0 GHz Intel
Xeon E5-2650 CPU.

5.1 Rising factorials
Rising factorials of a real or complex argument appear

when evaluating the gamma function via the asymptotic
Stirling series

log Γ(x) =

(

x− 1

2

)

log x− x+
log 2π

2

+

N−1∑

k=1

B2k

2k(2k − 1)x2k−1
+RN (x).

To compute Γ(x) with p-bit accuracy, we choose a positive
integer n such that there is an N for which |RN (x + n)| <
2−p, and then evaluate Γ(x) = Γ(x+ n)/xn. It is sufficient
to choose n such that the real part of x + n is of order βp
where β = (2π)−1 log 2 ≈ 0.11.

The efficiency of the Stirling series can be improved by
choosing n slightly larger than the absolute minimum in
order to reduce N . For example, Re(x + n) ≈ 2βp is a
good choice. A faster rising factorial is doubly advantageous:
it speeds up the argument reduction, and making larger n
cheap allows us to get away with fewer Bernoulli numbers.

Smith [14] uses the difference of four consecutive terms

(x+ k + 4)4 − (x+ k)4 = (840 + 632k + 168k2 + 16k3)

+ (632 + 336k + 48k2)x

+ (168 + 48k)x2

+ 16x3

to reduce the number of nonscalar multiplications to com-
pute xn from n − 1 to about n/4. This is precisely Algo-
rithm 4 specialized to the sequence of rising factorials and
with a fixed step length m = 4.

Consider Smith’s algorithm with a variable step length m.
Using the binomial theorem and some rearrangements, the
polynomials can be written down explicitly as

∆m = (x+ k+m)m − (x+ k)m =
m−1∑

v=0

xv
m−v−1∑

i=0

ki Cm(v, i)

(9)
where

Cm(v, i) =
m−v∑

j=i+1

mj−iS(m,v + j)

(

v + j

v

)(

j

i

)

(10)

and where S(m, v+ j) denotes an unsigned Stirling number
of the first kind. This formula can be used to generate ∆m

efficiently in practice without requiring bivariate polynomial
arithmetic. In fact, the coefficients can be generated even
cheaper by taking advantage of the recurrence (found by M.
Kauers)

(v + 1)Cm(v + 1, i) = (i+ 1)Cm(v, i+ 1). (11)

We have implemented several algorithms for evaluating
the rising factorial of a real or complex number. For tuning
parameters, we empirically determined simple formulas that
give nearly optimal performance for different combinations
of n, p < 105 (typically within 20% of the speed with the
best tuning value found by a brute force search):

• In Algorithm 1, m = n0.5.

• Algorithm 2 is applied to subproducts of length ñ =
min(2n0.5, 10p0.25), with m = ñ0.5.

• In Algorithms 3 and 4, m = min(0.2p0.4, n0.5).

Our implementation of Algorithm 4 uses (10) instead of
binary splitting, and Algorithm 3 exploits the symmetry of
x and k to update the matrix U using Taylor shifts instead
of repeated binary splitting.

Figure 1 compares the running times where x is a real
number with a precision of p = 4n bits. This input corre-
sponds to that used in our Stirling series implementation of
the gamma function.

On this benchmark, Algorithms 3 and 4 are the best by
far, gaining a 20-fold speedup over the naive algorithm for
large n (the speedup levels off around n = 105, which is
expected since this is the approximate point where FFT in-
teger multiplication kicks in). Algorithm 4 is slightly faster
than Algorithm 3 for n < 103, even narrowly beating the
naive algorithm for n as small as ≈ 102.

Algorithm 1 (fast multipoint evaluation) has the most
overhead of all algorithms and only overtakes the naive al-
gorithm around n = 104 (at a precision of 40,000 bits). De-
spite its theoretical advantage, it is slower than rectangular
splitting up to n exceeding 106.

Table 2 shows absolute timings for evaluating Γ(x) where
x ≈ π in Pari/GP 2.5.4, and our implementation in Arb (we
omit results for MPFR 3.1.1 and Mathematica 9.0, which
were both slower than Pari). Both implementations use the
Stirling series, caching the Bernoulli numbers to speed up
multiple evaluations. The better speed of Arb for a repeated
evaluation (where the Bernoulli numbers are already cached)

Figure 1: Timings of rising factorial algorithms, nor-
malized against the naive algorithm.

is mainly due to the use of rectangular splitting to evaluate
the rising factorial. The total speedup is smaller than it
would be for computing the rising factorial alone since we
still have to evaluate the Bernoulli number sum in the Stir-
ling series. The gamma function implementations over C

have similar characteristics.

Decimals Pari/GP (first) Arb (first)
100 0.000088 0.00010
300 0.00048 0.00036

1000 0.0057 0.0025
3000 0.072 (9.2) 0.021 (0.090)

10000 1.2 (324) 0.25 (1.4)
30000 15 (8697) 2.7 (22)

100000 39 (433)
300000 431 (7131)

Table 2: Timings in seconds for evaluating Γ(x)
where x is a small real number (timings for the first
evaluation, including Bernoulli number generation,
is shown in parentheses).

5.2 A one-parameter hypergeometric series
The gamma function can be approximated via the (lower)

incomplete gamma function as

Γ(z) ≈ γ(z,N) = z−1Nze−N
1F1(1, 1 + z,N). (12)

Borwein [3] noted that applying fast multipoint evaluation
to a suitable truncation of the hypergeometric series in (12)
allows evaluating the gamma function of a fixed real or com-
plex argument to p-bit precision using Õ(p1.5) bit opera-
tions, which is the best known result for general z (if z
is algebraic, binary splitting evaluation of the same series
achieves a complexity of Õ(p)).

Let tk = Nk/(z(z + 1) · · · (z + k)) and sn =
∑n

k=0 tk,
giving

lim
n→∞

sn = 1F1(1, 1 + z,N)/z.

For z ∈ [1, 2], choosing N ≈ p log 2 and n ≈ (e log 2)p gives
an error of order 2−p (it is easy to compute strict bounds).

The partial sums satisfy the order-2 recurrence
(

sk
tk+1

)

=
M(k)

q(k)

M(k − 1)

q(k − 1)
· · · M(0)

q(0)

(
0

1/z

)

(13)

where

M(k) =

(
1 + k + z 1 + k + z

0 N

)

, q(k) = 1 + k + z. (14)

The matrix product (13) may be computed using fast multi-
point evaluation or rectangular splitting. We note that the
denominators are identical to the top left entries of the nu-
merator matrices, and therefore do not need to be computed
separately.

Figure 2 compares the performance of the Stirling se-
ries (with fast argument reduction using rectangular split-
ting) and three different implementations of the 1F1 series
(naive summation, fast multipoint evaluation, and rectangu-
lar splitting using Algorithm 3 with m = 0.2n0.4) for evalu-
ating Γ(x) where x is a real argument close to unity.

Figure 2: Timings of gamma function algorithms,
normalized against the Stirling series with Bernoulli
numbers cached.

Both fast multipoint evaluation and rectangular splitting
speed up the hypergeometric series compared to naive sum-
mation. Using either algorithm, the hypergeometric series
is competitive with the Stirling series for a single evaluation
at precisions above roughly 10,000 decimal digits.

Algorithm 1 performs better than on the rising factorial
benchmark, and is faster than Algorithm 3 above 105 bits.
A possible explanation for this difference is that roughly
n ≈ 2p terms are added in the hypergeometric series (where
p is the precision in bits), compared to n ≈ p/4 for the rising
factorial, and rectangular splitting favors higher precision
and fewer terms.

The speed of Algorithm 3 is remarkably close to that of
Algorithm 1 even for p as large as 106. Despite being asymp-
totically slower, the simplicity of rectangular splitting com-
bined with its lower memory consumption and better nu-
merical stability (in our implementation, Algorithm 3 only
loses a few significant digits, while Algorithm 1 loses a few
percent of the number of significant digits) makes it an at-

tractive option for extremely high-precision evaluation of the
gamma function.

Once the Bernoulli numbers have been cached after the
first evaluation, the Stirling series still has a clear advantage
up to precisions exceeding 106 bits. We may remark that
our implementation of the Stirling series has been optimized
for multiple evaluations: by choosing larger rising factorials
and generating the Bernoulli numbers dynamically without
storing them, both the speed and memory consumption for
a single evaluation could be improved.

6. DISCUSSION
We have shown that rectangular splitting can be prof-

itably applied to evaluation of a general class of linearly
recurrent sequences. When used for numerical evaluation of
special functions, our benchmark results indicate that rect-
angular splitting can be faster than either naive evaluation
or fast multipoint evaluation over a wide precision range
(between approximately 103 and 106 bits). A qualitative
explanation of this result is that fast multipoint evaluation
has to overcome the overhead of fast multiplication to be-
come worthwhile, whereas rectangular splitting circumvents
the overhead of multiplication, even in the classical range.
It would be interesting to investigate whether Algorithm 1
can be implemented more efficiently in practice, for instance
using the Bostan-Gaudry-Schost improvement, or by pre-
conditioning the polynomials.

Two natural questions are whether our approach can be
extended to more general classes of sequences, and whether
it can be optimized further, perhaps for more specific classes
of sequences. A partial answer to the first question is that
rectangular splitting can be applied to any product of poly-
nomial matrices

∏

i M(i),M(i) ∈ R[x], not just those where
the entries of M(i) are polynomials in i. Much of the analy-
sis we have presented is valid assuming only that the entries
grow at most as polynomials in i, in particular assuming that
degx M(i) is bounded. Rectangular splitting is analogous to
binary splitting in this sense, whereas the fast multipoint
evaluation algorithm does not seem to generalize in such a
way.

7. ACKNOWLEDGEMENTS
The author thanks Manuel Kauers, William Hart, Paul

Zimmermann, Marc Mezzarobba and the anonymous refer-
ees for providing useful feedback on drafts of the text. A
version of this article appears in the author’s Ph.D. thesis.

8. REFERENCES
[1] A. V. Aho, K. Steiglitz, and J. D. Ullman. Evaluating

polynomials at fixed sets of points. SIAM Journal on
Computing, 4(4):533–539, 1975.

[2] D. J. Bernstein. Fast multiplication and its
applications. Algorithmic Number Theory, 44:325–384,
2008.

[3] P. B. Borwein. Reduced complexity evaluation of
hypergeometric functions. Journal of Approximation
Theory, 50(3), July 1987.

[4] A. Bostan, P. Gaudry, and É. Schost. Linear
recurrences with polynomial coefficients and
application to integer factorization and Cartier-Manin
operator. SIAM Journal on Computing,
36(6):1777–1806, 2007.

[5] R. P. Brent and P. Zimmermann. Modern Computer
Arithmetic. Cambridge University Press, 2011.

[6] D. G. Cantor and E. Kaltofen. On fast multiplication
of polynomials over arbitrary algebras. Acta
Informatica, 28(7):693–701, 1991.

[7] D. V. Chudnovsky and G. V. Chudnovsky.
Approximations and complex multiplication according
to Ramanujan. In Ramanujan Revisited, pages
375–472. Academic Press, 1988.

[8] W. B. Hart. Fast Library for Number Theory: An
Introduction. In Proceedings of the Third international
congress conference on Mathematical software,
ICMS’10, pages 88–91, Berlin, Heidelberg, 2010.
Springer-Verlag. http://flintlib.org.

[9] F. Johansson. Arb: a C library for ball arithmetic
(ISSAC 2013 software presentation). ACM
Communications in Computer Algebra, 47(4):166–169,
2013. http://fredrikj.net/arb/.

[10] S. Köhler and M. Ziegler. On the stability of fast
polynomial arithmetic. In Proceedings of the 8th
Conference on Real Numbers and Computers, Santiago
de Compostela, Spain, 2008.

[11] M. Mezzarobba. NumGfun: a package for numerical
and analytic computation with D-finite functions. In
Proceedings of ISSAC’10, pages 139–146, 2010.

[12] M. S. Paterson and L. J. Stockmeyer. On the number
of nonscalar multiplications necessary to evaluate
polynomials. SIAM Journal on Computing, 2(1),
March 1973.

[13] D. M. Smith. Efficient multiple-precision evaluation of
elementary functions. Mathematics of Computation,
52:131–134, 1989.

[14] D. M. Smith. Algorithm: Fortran 90 software for
floating-point multiple precision arithmetic, gamma
and related functions. Transactions on Mathematical
Software, 27:377–387, 2001.

[15] J. van der Hoeven. Fast evaluation of holonomic
functions. TCS, 210:199–215, 1999.

[16] J. van der Hoeven. Making fast multiplication of
polynomials numerically stable. Technical Report
2008-02, Université Paris-Sud, Orsay, France, 2008.

[17] J. von zur Gathen and J. Gerhard. Fast algorithms for
Taylor shifts and certain difference equations. In
Proceedings of ISSAC’97, pages 40–47, 1997.

[18] J. von zur Gathen and J. Gerhard. Modern Computer
Algebra. Cambridge University Press, 2nd edition,
2003.

[19] M. Ziegler. Fast (multi-)evaluation of linearly
recurrent sequences: Improvements and applications.
2005. http://arxiv.org/abs/cs/0511033.

http://flintlib.org
http://fredrikj.net/arb/
http://arxiv.org/abs/cs/0511033

	Introduction
	Matrix algorithms
	Binary splitting
	Fast multipoint evaluation

	Rectangular splitting for parametric sequences
	Variations
	Several parameters

	Numerical evaluation
	Summation of power series
	Comparison with asymptotically faster algorithms

	High-precision computation of the gamma function
	Rising factorials
	A one-parameter hypergeometric series

	Discussion
	Acknowledgements
	References

