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Numerical integration∫ 1

−1
f (x)dx ≈

n∑
i=1

wi f (xi)

n = degree
xi = nodes
wi = weights

Gauss-Legendre quadrature: x1, . . . , xn are the roots of the
Legendre polynomial Pn(x), defined by orthogonality∫ 1

−1
Pn(x)Pm(x)dx =

{
0 m 6= n

2
2n+1 m = n.

The weights are

wi =
2(

1− x2
i

)
[P ′n(xi)]2

.
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Legendre polynomials

Equivalent definitions:

Pn(x) = 2F1
(
−n,n + 1, 1, 1

2 (1− x)
)

1√
1− 2xt + t 2

=

∞∑
n=0

Pn(x)t n

(1− x2)P′′
n (x)− 2xP′

n(x) + n(n + 1)Pn(x) = 0 + initial values

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5
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P30(x) =
1

67108864

(
7391536347803839x30 − 54496920530418135x28 + . . .

+ 10529425731825x6 − 347123925225x4 + 4508102925x2 − 9694845
)
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Rapid convergence of GL quadrature

GL quadrature is exact when f is a polynomial of degree at
most 2n − 1, and nearly optimal when f is well-approximated
by polynomials (e.g. analytic with no poles close to [−1, 1]).

Example: |
∫ 1
−1 f (x)dx −∑n

i=1 wif (xi)|

n f (x) = log(2 + x) f (x) = Ai(10x)

12 10−14 10−1

24 10−28 10−9

48 10−56 10−34

96 10−111 10−105

192 10−222 10−284

384 10−441 10−721

768 10−881
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The drawback of Gaussian quadrature

High-precision [Gauss-Legendre] abscissas and
weights, once computed, may be stored for future use.
But for truly extreme-precision calculations – i.e.,
several thousand digits or more – the cost of
computing them even once becomes prohibitive.

– D. H. Bailey and J. M. Borwein, High-precision numerical
integration: Progress and challenges, J. Symb. Comp., 2011

Alternatives with simpler nodes:

I Clenshaw-Curtis – nodes cos(πk/n), weights by FFT
(≈ 2n points for same accuracy as n-point GL)

I Double exponential – nodes+weights by exponentials
(> 5n points for same accuracy)
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What is the complexity of computing GL rules?

Can use Newton iteration from initial values xk ≈ cos
(

4k+3
4n+2π

)
O(n) – number of roots
O(n) – number of operations to evaluate Pn,P ′n
O(p) – precision in bits

Time complexity (ignoring log factors):
I O(n2p) – basic algorithm

I O(n2) when p = O(1)
I Can be improved to O(n) using asymptotic expansions.

Fast double (p = 53) implementations by Hale, Townsend,
Bogaert and others (without rigorous error bounds).

I O(n3) = O(p3) when n ∼ p
I Can be improved to O(n2) by computing all roots

simultaneously, using fast multipoint evaluation.
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What’s new

Efficient (in practice) algorithm for evaluating Pn(x) on [−1, 1]
and computing roots and Gauss-Legendre quadrature rules in
arbitrary precision.

Implementation with rigorous error bounds in the Arb library
(http://arblib.org) using ball arithmetic [m ± r].

Performance for computing quadrature rules:

I O(n) complexity when p = O(1).
I O(n3) complexity when n ∼ p, but in practice better than

fast multipoint evaluation for realistic n.
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Overall strategy

I Newton iteration converges from initial approximations

xk ≈ cos
(

4k+3
4n+2π

)
(error bounds by Petras, 1999)

I For high precision, use interval Newton method with
doubling precision steps

I By symmetry, can assume k < n/2 and xk ∈ (0, 1)

I For x = [m ± r], can evaluate at m and bound error for
Pn(x) and P ′n(x) using bounds for |P ′n(x)| and |P ′′n(x)|

I We can obtain P ′n(x) from (Pn(x),Pn−1(x)) using
contiguous relations

I The problem is now reduced to simultaneous
computation of Pn(x) and Pn−1(x), with exact x ∈ [0, 1]
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Our strategy for evaluating (Pn(x),Pn−1(x))

Three-term recurrence (n and p small,. 1000):

(n + 1)Pn+1(x)− (2n + 1)xPn(x) + nPn−1(x) = 0

Hypergeometric series expansions:

Pn(x) =
∑n

k=0 ckxk (truncated when x is near 0)
Pn(x) =

∑n
k=0 dk(x − 1)k (truncated when x is near 1)

Asymptotic expansion (large n, for x not too close to 1):

Pn(cos(θ)) ∼∑∞k=0
ak(n,θ)
sink(θ)

Hybrid method: for each method/series, estimate

cost = (number of terms) · (working precision),

choose method with lowest cost.
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Stability of the three-term recurrence

Example: use (n + 1)Pn+1(x) = (2n + 1)xPn(x)− nPn−1(x)
starting from P0(x) = 1,P1(x) = x to evaluate Pn(0.40625), in:

I 53-bit floating-point arithmetic
I 53-bit ball arithmetic

n Error in 53-bit FP Result in 53-bit ball arithmetic

10 6 · 10−18 [0.244683436384045 +/- 8.81e-17]

20 2 · 10−17 [0.07466174411982 +/- 8.44e-15]

40 4 · 10−17 [-0.1291065547 +/- 3.76e-11]

100 1 · 10−18 [+/- 0.239]

200 6 · 10−17 [+/- 1.72e+16]

400 5 · 10−17 [+/- 2.93e+50]

With naive error bounds, we would need O(n) extra precision.
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Error bounds for the three-term recurrence

Exact version:

Pn+1 =
1

(n + 1)
((2n + 1)xPn − nPn−1)

Approximate version:

P̃n+1 =
1

n + 1
((2n + 1)xP̃n − nP̃n−1) + εn, |εn| ≤ ε̄

We can show:

|P̃n − Pn| ≤
(n + 1)(n + 2)

4
ε̄

This permits a fast, rigorous implementation with mpz t

fixed-point arithmetic, using only O(log n) extra precision.
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Proof sketch

The sequence of errors δn = P̃n − Pn satisfies the recurrence

(n + 1)δn+1 = (2n + 1)xδn − nδn−1 + ηn, ηn = (n + 1)εn.

This translates to a differential equation

δ(z) =
∑
n≥0

δnzn, η(z) =
∑
n≥0

ηnzn

(1− 2xz + z2)z
d

dz
δ(z) = z(x − z)δ(z) + zη(z)

with solution

δ(z) = p(z)

∫ z

0
η(w) p(w) dw, p(z) =

1√
1− 2xz + z2

.

Computing a majorant for δ(z) gives the result.
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Hypergeometric series expansions
For x close to 1:

Pn(x) =

n∑
k=0

(
n
k

)(
n + k

k

)(
x − 1

2

)k

For x close to 0 (also, for general x at high precision):

P2d+j(x) =

d∑
k=0

(−1)d+k

2n

(
n

d − k

)(
n + 2k + j

n

)
x2k+j , j ∈ {0, 1}

Truncation bounds: first omitted term× geometric series

Estimates for cancellation (extra working precision) via:

Pn(1 + x) ≈∑∞
k=0

n2k

(k!)2

(
x
2

)k
= I0(2n

√
x/2) ≈ e2n

√
x/2

|Pn(z)|≤ |Pn(i|z|)|≤
(
|z|+

√
1 + |z|2

)n

(Here we really need O(n) extra bits of precision.)
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Fast evaluation of hypergeometric series

We evaluate hypergeometric series

N∑
k=0

ckxk , ck/ck−1 ∈ Q(k)

using rectangular splitting

(�+�x + . . .+�xm−1) + xm((�+�x + . . .) + xm(. . .))

with m ∼
√

N , costing O(
√

N ) expensive + O(N ) cheap ops.

I Exploit ck/ck−1 to get small coefficients (Smith, 1989)
I Collect denominators to skip most divisions
I For Pn,Pn−1 or Pn,P ′n simultaneously: recycle x2, . . . , xm

I Implementation using ball arithmetic for error bounds
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Asymptotic expansion

For large n and x = cos(θ) < 1:

Pn(cos(θ)) =

(
2

π sin(θ)

)1/2 K−1∑
k=0

Cn,k
cos(αn,k(θ))

sink(θ)
+ ξn,K (θ)

Cn,k =
[Γ(k + 1

2)]2Γ(n + 1)

π2kΓ(n + k + 3
2)Γ(k + 1)

, |ξn,K (θ)|<
√

8
π sin(θ)

Cn,K

sinK (θ)

Let ω = 1− (x/y)i, with x = cos(θ) and y = sin(θ). Then

Pn(x) =
√
πy Re

[
(1− i)(x + yi)n+1/2

K−1∑
k=0

Cn,kω
k

]
+ ξn,K (θ).

By working with complex numbers, the sum becomes a pure
hypergeometric series and rectangular splitting can be used.
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Time to evaluate (Pn,P ′n) for varying x

0.0001
0.0002
0.0003
0.0004
0.0005
0.0006
0.0007
0.0008
0.0009

T
im

e
(s

)

Series at x = 1

Asymptotic series

n = 10000, p = 1024

x = 1x = 0

Position of root

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

T
im

e
(s

)

Series at x = 1

Series at x = 0

n = 10000, p = 16384
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Time to evaluate (Pn,P ′n) at n/2 points

Constant precision, p = 64

101 102 103 104 105

n

10−2

10−1

100

101

102

R
el

at
iv

e
ti

m
e

Three-term recurrence, O(n2)

Hybrid method, O(n)

Fast multipoint evaluation, O(n2)

Hybrid method without
three-term recurrence
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Time to evaluate (Pn,P ′n) at n/2 points

Increasing precision, p = n/10

101 102 103 104 105

n
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100
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102

R
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iv

e
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m
e
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Time to evaluate (Pn,P ′n) at n/2 points

Increasing precision, p = 10n
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Time to generate Gauss-Legendre quadrature rules

n \ p 64 256 1024 3333 33333
20 0.000149 0.000300 0.000660 0.00149 0.0217
50 0.000540 0.00119 0.00267 0.00590 0.0760

100 0.00181 0.00380 0.00900 0.0188 0.205
200 0.00660 0.0141 0.0310 0.0640 0.624
500 0.0289 0.0850 0.214 0.384 2.80

1000 0.0660 0.174 0.625 1.36 9.68
2000 0.106 0.362 1.20 4.52 34.3
5000 0.235 0.815 2.92 14.6 189

10000 0.480 1.63 5.49 27.3 694
100000 4.90 16.1 49.6 221 13755

1000000 73.0 195 512 2016 105705

Time in seconds to compute the degree-n Gauss-Legendre
quadrature rule with p-bit precision.
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Time to generate Gauss-Legendre quadrature rules

n \ p 64 256 1024 3333 33333
20 3.9 2.3 2.3 2.3 3.6
50 8.0 4.2 3.9 3.6 5.6

100 11 6.0 5.0 4.7 7.5
200 17 8.9 7.8 7.0 10
500 71 25 14 13 21

1000 383 150 46 29 31
2000 4680 1320 395 118 55
5000

10000
100000

1000000

Speedup compared to Pari/GP intnumgaussinit.
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Another comparison: 1000-digit quadrature

D. H. Bailey’s ARPREC precomputes 3408-bit Gauss-Legendre
rules of degree n = 3 · 2i+1, 1 ≤ i ≤ 10 intended for integration
with up to 1000 digit accuracy.

n ARPREC (s) Our code (s) Speedup
12 0.00520 0.000735 7.1
24 0.0189 0.00197 9.6
48 0.0629 0.00574 11.0
96 0.251 0.0185 13.6

192 0.974 0.0611 16.0
384 3.83 0.231 16.6
768 15.2 0.875 17.4

1536 60.9 3.03 20.0
3072 241 9.75 24.7
6144 1013 18.4 55.0
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Gauss vs Clenshaw-Curtis vs double exponential

Recall: number of points for equivalent accuracy

I Gauss-Legendre: n
I Clenshaw-Curtis: ≈ 2n
I Double exponential: > 5n

Time to generate suitable quadrature rule:

1000 digits
I GL: 1 second
I CC: 0.1 seconds
I DE: 0.1 seconds

10000 digits
I GL: 10 minutes
I CC: 0.5 minutes
I DE: 2 minutes

Gauss-Legendre is competitive for≈ 10 integrals, or single
integral when integrand costs≈ 10 elementary functions
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New rigorous integration code in Arb

Adaptive subdivision + degree-adaptive Gauss-Legendre
quadrature + error bounds based on complex magnitudes
(Petras algorithm)

Gauss-Legendre quadrature rules are automatically cached

Documentation: http://arblib.org/acb_calc.html

Blog post: http://fredrikj.net/blog/2017/11/
new-rigorous-numerical-integration-in-arb/
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Integration examples
An example from the Mathematica documentation:∫ 1

0
sech2(10(x−0.2))+sech4(100(x−0.4))+sech6(1000(x−0.6))dx = 0.2108027 . . .

With default settings, many numerical integrators (Mathematica,
Sage, SciPy, mpmath, Pari/GP, ...) return an incorrect estimate!

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0
1.2

Arb with 100 digits: 0.04 s (+ 0.02 s nodes computation)
Arb with 1000 digits: 8.7 s (+ 2.3 s nodes computation)

mpmath with 100 digits: 0.7 s (must split domain manually)
mpmath with 1000 digits: 32 s (must split domain manually)
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Integration examples
Rump’s oscillatory example∫ 8

0
sin(x + ex) = 0.347400172657 . . .

0 1 2 3 4 5 6 7 8
−1.0

−0.5

0.0

0.5

1.0

Arb with 100 digits: 0.02 s (+ 0.01 s nodes computation)
Arb with 1000 digits: 1.2 s (+ 4.1 s nodes computation)

mpmath with 100 digits: 0.6 s (must increase degree manually)
mpmath with 1000 digits: 12 s
Pari/GP with 100 digits: 0.2 s (must split domain manually)
Pari/GP with 1000 digits: 14 s (must split domain manually)
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Conclusion
I Error analysis for three-term recurrence + fast hybrid

algorithm in ball arithmetic to evaluate Legendre
polynomials on [−1, 1] for any combination of n,p.

I Order-of-magnitude speedup for computing high-
precision Gauss-Legendre quadrature rules. GL
quadrature becomes practical even at 103 or 104 digits.

I We also tested fast multipoint evaluation and found that
our algorithm performs better in practice.

I Extension to other Gaussian quadrature rules∫ b

a
w(x)f (x)dx ≈

n∑
i=1

wi f (xi)

(Jacobi, Laguerre, Hermite, . . . polynomials) would be
useful and could be done using similar techniques.
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