
Generic rings in FLINT

Fredrik Johansson

Abstract We describe GR, a system for type-generic algebraic computation imple-
mented in the C library FLINT. We combine lightweight dynamic dispatch with high-
performance mutable data structures, optimized kernel operations and generic high-
level algorithms. We offer robust support for inexact ring implementations such as real
and complex numbers represented using ball arithmetic.

1 Introduction

One of the jobs of a computer algebra system is to support generic programming, al-
lowing a single algorithm to be executed for different types of input. Different types
can represent different algebraic structures, or perhaps different implementations of the
same algebraic structure (large or small integers; exact or approximate real numbers;
dense or sparse polynomials). In a well-designed generics system, one should be able
to express the concerns of high-level mathematical algorithms orthogonally to the low-
level implementation details and performance tradeoffs of specific types [21].

There are many existing libraries combining some generic model for mathematical
objects with techniques for high-performance computing, offering different tradeoffs
between speed, dynamicity, type safety and other aspects. For a non-exhaustive list, we
mention SageMath [28], Magma [6], Oscar [10], GAP [3], Pari/GP [27], CoCoA [1],
Singular [11], LinBox [12], Mathemagix [29] and BPAS [7]. Some systems use a small
C/C++ kernel for efficient arithmetic on some restricted set of types (e.g. GMP [16] for
variable-size integers), leaving the generic constructions to a higher-level language; oth-
ers implement a sophisticated mathematical object system with generic programming
support directly in C or C++ or a similar low-level language.

In this work, we present GR (“generic rings”), a generics system in C for the FLINT
library [14]. GR was introduced in FLINT 3.0 in 2023 and is still under active develop-

Fredrik Johansson
Inria, IMB (UMR 5251), e-mail: fredrik.johansson@gmail.com

1

fredrik.johansson@gmail.com

2 Fredrik Johansson

ment; features described in this article refer to FLINT 3.3. Documentation is available
at https://flintlib.org/doc/gr.html.

FLINT provides many specific C types corresponding to different algebraic struc-
tures, mostly rings. Until recently, FLINT used some ad hoc solutions for limited in-
ternal generic programming but lacked a general-purpose generics system. We created
GR in part to be able to more easily add new features to FLINT itself, in part to be able
to refactor FLINT’s internals for code size and performance, in part to address short-
comings in computer algebra systems like SageMath, Oscar and SymPy [26] which use
FLINT as a backend library.

While many implementation techniques in GR are standard, we believe it is worth-
while to document our specific design choices by which we attempt to simultaneously
maximize runtime flexibility, runtime performance, and compile-time efficiency.

A notable functionality of GR is that we support inexact representations in the math-
ematically rigorous sense of interval arithmetic. This feature is motivated by analytic
applications requiring different models of real and complex numbers, but is applicable
more generally, e.g. to exact rings with symbolic parameters or undecidable predicates.

This article is intended in part as an introduction to GR for prospective users, in
part as an implementation case study which may be instructive for developers of other
mathematical libraries.

2 Feature overview

GR allows constructing context objects defining implementations of various algebraic
structures and provides a generic interface for manipulating elements of such structures.

Context constructors are provided for working with most of FLINT’s builtin types:
rational numbers represented by fmpq, number field elements represented by nf_elem,
polynomials in Q[-] represented by fmpq_poly, real numbers represented by arb
balls, etc. The context object stores eventual ring parameters (such as the modulus for
a residue ring) and computational parameters (such as precision).

GR offers a wide range of methods for basic arithmetic, special functions, polyno-
mial arithmetic, linear algebra, etc., largely encompassing the functionality previously
provided in FLINT for each individual type. Since GR provides a single, uniform in-
terface to a large part of FLINT’s more than 100 C types and 10,000 C functions, it
notably simplifies the job for other software to interface with FLINT.

In addition, GR provides the following parametric types:

• gr_vec - dense vectors - Vec(') (variable length) or Vec(', =)
• gr_mat - dense matrices - Mat(') or Mat(', <, =)
• gr_poly - dense univariate polynomials - '[-]
• gr_mpoly - sparse multivariate polynomials - '[-1, . . . , -=]
• gr_series - power series - '[[-]]
• gr_series_mod - truncated power series - '[[-]]/〈-# 〉
• gr_fraction - fraction fields - Frac(')

https://flintlib.org/doc/gr.html

Generic rings in FLINT 3

These types are fully recursive and can use builtin FLINT types, other generic types
or user-defined types for the ground domain '. The system is completely dynamic: the
user may define their own types at runtime. Planned future extensions include generic
sparse vectors, sparse matrices, and Ore polynomials.

3 Basic data structures and interface

We use a typical pointer-based approach to generic programming in C: a ring ' is rep-
resented by a context object (of type gr_ctx_t) containing the following data:

• the element size in bytes, i.e. sizeof(T) where T is the C type of an element,
• a method table (an array of C function pointers),
• a numerical code identifying the context object for internal use.

Some fundamental methods for memory management, conversions and arithmetic must
be implemented by each context object; other methods have generic default implemen-
tation which a context object can optionally override with more performant versions.

Elements are stored in mutable variables which must be initialized before use and
cleared after use by calling the methods gr_init and gr_clear. References to el-
ements are passed around as void pointers. We define gr_ptr as a type alias for a
pointer to a writable (output) variable and gr_srcptr for a pointer to an input vari-
able which should be read-only. These aliases are also used for pointers to arrays of
contiguous elements.

The programming interface can be illustrated with the following code example which
defines a function to compute dot(D, {) = ∑=−1

8=0 D8{8 , constructs the ring of Gaussian
integers Z[8] (with elements represented by the builtin FLINT type fmpzi), constructs
the polynomial ring Z[8] [G], creates the vector D = [G+8, G−8], computes B← dot(D, D)
(= −2 + 2G2), and prints B.

GR code example

#include "flint/gr.h"

int
dot(gr_ptr res, gr_srcptr u, gr_srcptr v, slong n, gr_ctx_t ctx)
{

int status = GR_SUCCESS;
slong i, sz = ctx->sizeof_elem;
gr_ptr t;
GR_TMP_INIT(t, ctx);

status = gr_zero(res, ctx);
for (i = 0; i < n; i++)
{

status |= gr_mul(t, GR_ENTRY(u, i, sz), GR_ENTRY(v, i, sz), ctx);
status |= gr_add(res, res, t, ctx);

4 Fredrik Johansson

}

GR_TMP_CLEAR(t, ctx);
return status;

}

int main()
{

gr_ctx_t ZZi, ZZix;
gr_ptr u, s;
int status = GR_SUCCESS;

gr_ctx_init_fmpzi(ZZi);
gr_ctx_init_gr_poly(ZZix, ZZi);
GR_TMP_INIT_VEC(u, 2, ZZix);
GR_TMP_INIT(s, ZZix);

status |= gr_set_str(GR_ENTRY(u, 0, ZZix->sizeof_elem), "x+i", ZZix);
status |= gr_set_str(GR_ENTRY(u, 1, ZZix->sizeof_elem), "x-i", ZZix);
status |= dot(s, u, u, 2, ZZix);
status |= gr_println(s, ZZix); // Outputs -2 + 2*x^2

GR_TMP_CLEAR_VEC(u, 2, ZZix);
GR_TMP_CLEAR(s, ZZix);
gr_ctx_clear(ZZix);
gr_ctx_clear(ZZi);

return status;
}

Here, gr_zero, gr_mul and gr_add are inline C functions which look up and call
the implementations of the relevant operations in the method table of ctx. We note that
these methods must be passed the context object and the input operands as well as an
output variable which is mutated in-place.

The GR_ENTRY macro is used to access the 8th element of a vector with elements sz
bytes apart. The status codes used for error handling are discussed below in section 8.

The GR_TMP_INIT macro allocates a temporary variable on the C stack and ini-
tializes it by calling gr_init. GR_TMP_CLEAR performs the corresponding cleanup.
A stack variable in C can be used locally in a function and forwarded in subroutine
calls, but cannot be returned up through the call stack. We mention that there are sep-
arate functions for heap-allocating variables, but they are rarely needed as most GR
functions follow the convention that output variables are preallocated by the caller. The
GR_TMP_INIT_VEC macro creates a temporary array of elements which will be placed
on the stack or on the heap depending on the size.

Generic rings in FLINT 5

4 Type system

Input and output operands in GR must have precisely the type specified by the context
object. We do not extend the domain of results automatically; for example, division of
elements in Z using the standard gr_div method produces exact quotients in Z rather
than fractions in Q (see section 8 regarding error handling). If we want to generate
fractions, we must explicitly convert our fmpz operands to new variables belonging to
an fmpq rational number context.

We make this deliberate restriction in part for performance reasons as it allows dis-
pensing with runtime type checks, but also because it removes a host of extension- and
coercion-related ambiguities present in some computer algebra systems.

Coercions are possible by using mixed-type methods for which the user must specify
the result type explicitly. For example, the function

int gr_mul_other(gr_ptr res, gr_srcptr x,
gr_srcptr y, gr_ctx_t y_ctx, gr_ctx_t ctx)

allows computing res ← G · H where res, G ∈ Q and H ∈ Z, and similarly for many
other type combinations such as res, G ∈ '[-] and H ∈ '. There is an analogous
function gr_other_mul where the type of G rather than H differs from res, useful for
noncommutative rings.

In many applications, it is crucial to be able to choose different algorithms or pa-
rameters depending on the properties of the algebraic structure one is dealing with. We
do not attempt to introduce any class hierarchy for GR types. Instead, context objects
overload predicate methods such as the following:

• gr_ctx_is_commutative_ring
• gr_ctx_is_integral_domain
• gr_ctx_is_field

These methods are expected to be cheap so that they can be used for efficient internal
algorithm dispatch. For example, implementations of ' = Z/<Z should not test < for
primality each time we check whether ' is a field; instead, we allow setting a primality
flag in the context objects for such types, and the predicate methods simply read this
flag.

5 Performance and vectorization

The GR memory model makes the following key design choices for performance:

• Elements have the same type and do not require a header (all metadata is stored in
the separate context object) and can thus be packed contiguously in vectors.

• Variables are mutable.

These choices help ensure compatibility between GR generics and non-generic
FLINT code. For example, a polynomial with fmpz coefficients can be manipulated
just as well using generic gr_poly methods as with specialized fmpz_poly methods.

6 Fredrik Johansson

GR supports both “shallow” (i.e. pointer-free) data structures and “deep” data struc-
tures (which may allocate variable-size data on the heap) for elements. An example of
a deep type is GMP’s arbitrary-size integer type mpz whose data structure contains a
count of used words, a count of allocated words, and a pointer to a heap-allocated array
of words. The context object for a deep type is expected to define a gr_clear method
which deallocates data; for a shallow type, this destructor usually does nothing.

The use of mutable variables in GR is inspired by GMP’s interface for mpz and helps
amortize the cost of allocations, deallocations and pointer management in deep types,
but cannot eliminate this overhead completely. FLINT’s fmpz integer type attempts to
achieve some of the benefits of a shallow type by using single-word data structure which
can hold a small value |=| < 262 inline, turning into a pointer to a heap-allocated mpz
only when needed to store a larger value.

A single GR operation like gr_add requires a method table lookup and a C func-
tion call, which together may have an overhead of a handful of CPU cycles (around one
nanosecond). This is negligible for operations on complex objects like rational numbers
or number field elements, but it is significant for individual operations on shallow ma-
chine types. To minimize the impact of runtime dispatch, we attempt to rely as much
as possible on fused, vectorized and batched operations in high-level algorithms. GR
methods can essentially be categorized into three levels:

• Elementwise operations like I ← G + H, which must be implemented by each ring.
• Vector operations like I8 ← G8 + H8 or H8 ← H8 ± G8 · 2. These have generic default

implementations which call the corresponding elementwise operations in a loop.
• Higher-complexity operations (e.g. polynomial multiplication, matrix multiplica-

tion). These have generic default implementations which repeatedly call vector meth-
ods and other higher-complexity methods.

Ring implementations can optionally overload specific vector operations and/or
higher-complexity operations with non-generic variants to improve performance. Opti-
mizing vector operations for a specific type can have several benefits:

• Eliminating inner function calls.
• Allowing SIMD vectorization.
• Taking advantage of delayed reduction or preconditioning. The most important vec-

tor operations are dot products which greatly benefit from delayed modular reduc-
tion in residue rings and delayed sum normalization for multiprecision floating-point
types [19].

Higher-complexity operations can further benefit from improved memory locality
and use of asymptotically fast algorithms (e.g. FFT and Strassen multiplication).

Table 1 compares overheads for adding integer vectors of type fmpz. We observe
that using the GR interface for elementwise operations instead of the non-generic fmpz
interface incurs roughly a 30% overhead for small (single-word) integers and a 10%
overhead for integers with a few words. The _fmpz_vec_add method is specially opti-
mized for small coefficients, running up to three times faster than the elementwise loop.

Generic rings in FLINT 7

Table 1 Time (nanoseconds) to add two length-= vectors over Z.
20-bit coefficients 200-bit coefficients

Code = = 1 = = 10 = = 100 = = 1 = = 10

for (i = 0; i < n; i++)
fmpz_add(z + i, x + i, y + i);

2.7 25.1 253.0 10.1 94.8

for (i = 0; i < n; i++)
status |= gr_add(

GR_ENTRY(z, i, sz),
GR_ENTRY(x, i, sz),
GR_ENTRY(y, i, sz), ctx);

3.9 34.3 344.0 11.2 107.0

_fmpz_vec_add(z, x, y, n);
3.2 12.7 98.0 12.7 95.9

status |= _gr_vec_add(z,
x, y, n, ctx);

3.6 13.2 98.1 12.7 94.1

There is virtually no difference in performance between using the generic _gr_vec_add
interface and the non-generic _fmpz_vec_add interface to invoke this vector operation.

We have replaced hundreds of previously non-generic functions in FLINTwithwrap-
pers around generic GR algorithms. In each case, we have carefully verified that this
caused no measurable performance regressions once the relevant underlying vector op-
erations had appropriate specializations in GR.

6 Specialization for parametric types

When a ring depends on a parameter, say ' = '? , and the size of elements can be
bounded as a function of ?, a GR implementation of ' is free to choose the element
size at runtime when the context object is created. This has two benefits: one may be
able to use a shallow type instead of a deep type, and one can choose methods optimized
for the specific parameter ?.

There is no hard upper limit on the size of GR elements, but generally an element
should not be larger than a few kilobytes to avoid the risk of stack overflow when al-
locating temporary variables on the C stack; elements larger than a few dozen words
should therefore use heap allocation. (Indeed, for multi-kilobyte elements, allocation
overheads are in any case generally going to be negligible.)

Historically, FLINT had only two representations of Z/<Z: the shallow ulong type
for single-word < and fmpz for arbitrary-size <. After adding GR to FLINT, we imple-
mented a new intermediate mpn_mod representation for Z/<Zwith 264 ≤ < ≤ 21024−1,
where each element is stored shallowly using the optimal number 2 ≤ ℓ ≤ 16 of 64-bit
words.

8 Fredrik Johansson

100 101 102 103

Polynomial length n

1

2

3

Speedup for polynomial GCD

128 bits
256 bits
512 bits
1024 bits

100 101 102 103

Matrix dimension n

1

2

3

Speedup solving Ax= b

128 bits
256 bits
512 bits
1024 bits

Fig. 1 Speedup using the mpn_mod representation for Z/<Z arithmetic instead of the general-purpose
fmpz integer format, for various sizes of < between 128 and 1024 bits.

Figure 1 illustrates the speedup of using mpn_mod instead of fmpz for polynomial
GCD (gr_poly_gcd) and linear system solving (gr_mat_nonsingular_solve) over
Z/<Z for varying bit sizes of < and polynomial lengths or matrix sizes =.

For small =, these functions use basecase algorithms (the Euclidean algorithm and
Gaussian elimination respectively), which are implemented using delayed modular re-
ductions modulo< both in the case of mpn_mod and fmpz. For large =, both use generic
GR implementations of standard divide-and-conquer methods (the half-GCD algorithm
and block recursive LU factorization respectively).

Although mpn_mod and fmpz perform comparably when =→∞ as fast polynomial
or matrix multiplication kicks in (the huge-= multiplication backends are the same for
both formats), mpn_mod achieves a significant speedup for moderate values of =. This
can be attributed to three factors:

• Faster arithmetic in the basecase algorithms.
• Less overhead for temporary allocations in the divide-and-conquer algorithms.
• Faster medium-sized polynomial and matrix multiplication, due to significantly

cheaper additions and subtractions allowing the use of dedicated medium-size multi-
plication algorithms (Karatsuba and Waksman [30] multiplication) which rely heav-
ily on trading multiplications for additions.

We have analogously implemented shallow real and complex floating-point formats
(nfloat, nfloat_complex) with 1 ≤ ℓ ≤ 66 words of mantissa, permiting precisions
between 64 and 4224 bits (in any multiple of 64). We note that this is equivalent to sup-
porting 132 distinct C types nfloat64, nfloat128, ...). The improvement compared to
MPFR’s arbitrary-precision mpfr [15] or FLINT’s arf [18] are similar to those reported
for Z/<Z above, with speedups of order 2× on high-level benchmarks like polynomial
root-finding and approximate linear solving over R and C. In future work, we intend to
extend these results to ball arithmetic.

In these parametric types, we currently do not generate a different method table for
each parameter value, although this would be a possibility. However, the arithmetic op-

Generic rings in FLINT 9

erations do switch internally between different fixed-length assembly routines, notably
for multi-word integer multiplication [2].

We conclude that it is useful to generate specialized representations for different
parameter values instead of using a one-size-fits-all type.

This is of course well known practice, notably exploited by several mathematical li-
braries using C++ templates for generics (ahead-of-time compilation) andmore recently
by libraries based on Julia [5] (with just-in-time compilation). One common drawback
of such systems is that the whole program depending on '? typically will be recom-
piled for each instance of ?, which can make compile times a significant bottleneck;
see [13] for a discussion of how just-in-time compilation costs prevent taking advan-
tage of the full flexibility of Julia’s type system for computer algebra. In contrast, our
approach in GR is to selectively optimize only performance-critical kernel operations
while using reasonably efficient runtime dispatch for everything else. We believe that
this can achieve near-optimal runtime performancewhile leaving it feasible to have large
programs with hundreds or thousands of parameter specializations.

Making it cheap to construct context objects in GR is important for instance in the
support of multimodular algorithms, which may need to create a million instances of a
ring like Z/<Z or (Z/<Z) [-]. Most context object initializers in GR perform no mem-
ory allocations or substantial precomputations, allowing for initialization timemeasured
in single nanoseconds with a cached method table (constructing a method table, which
only needs to be done once for a given type, costs roughly half a microsecond). Certain
context constructors such as those for number fields [17] perform more expensive pre-
computations (perhaps comparable in cost to a handful of arithmetic operations in the
ring) as a tradeoff to allow faster arithmetic.

A quantitative comparison of tradeoffs in GR and other generics implementations
for parametric types would be a welcome subject for future study.

7 Inexact elements

GR supports inexact representations, adopting the semantics of interval arithmetic: a
variable G is understood to represent an enclosure of possible element values, and meth-
ods are required to preserve inclusions. The interface is the same for inexact types and
exact types; in the latter case, enclosures are simply singletons.

Builtin FLINT types with inexact representation include real and complex balls (arb
and acb) and generic finite-precision power series (gr_series) where an $ (-=) term
represents an enclosure of series tails. Indeed, we can without problem construct an
object like

[1 ± 0.001] + [0 ± 0.0001]- +$ (-2) ∈ R[[-]]

mixing the two kinds of error bound.
All generic data structures and algorithms (e.g. for linear algebra) have been imple-

mented from the ground up to work correctly with inexact elements. This is a notable
improvement over several existing generic mathematical libraries and computer algebra

10 Fredrik Johansson

systems which often work unreliably with inexact types. A common problem is that an
algorithm implements a conditional branch

if (x == 0)
// handle the case x == 0

else
// handle the case x != 0

with exact objects in mind, giving incorrect results when the predicate G = 0 evalu-
ates to a false positive or a false negative given an inexact representation of G.

We get around this problem by using triple-valued logic for all predicates, i.e. by
using enclosure semantics for boolean values (represented by the type truth_t in GR)
and implementing all control flow from the ground up to deal correctly with the un-
known case. Thus the above example generally translates to something like

truth_t zero = gr_is_zero(x, ctx);

if (zero == T_TRUE)
// handle the case x == 0

else if (zero == T_FALSE)
// handle the case x != 0

else // (zero == T_UNKNOWN)
// handle the case where we don't know

in a GR algorithm.
One implication is that we must support weakly normalized representations of struc-

tures which in the exact case admit a strongly normalized (canonical) form. For example,
a gr_poly

5 = 20 + 21- + . . . + 2=-=

is normalized by removing leading zero coefficients, but leading coefficients for which
gr_is_zero returns unknown like [0±0.001] or 0+$ (-10) will not be removed. Over
a ring with inexactly represented elements, deg(5) will thus not necessarily be known
exactly (but can be bounded). Operations that depend on knowing the exact degree (for
example, polynomial division and GCD) will fail gracefully instead of computing bogus
results.

This framework also accommodates ring implementations which principle have ex-
act representation but in which some operations are not computable or decidable. An
example is FLINT’s ca type for exact real and complex numbers represented by means
of algebraic or transcendental number fields Q(U1, . . . , U=) which can have nontrivial
(possibly undecidable) algebraic relations among the extension generators [20].We deal
correctly (e.g. by returning unknown in affected predicates) with situations where we
cannot establish the necessary presence or absence of a relation.

GR also supports approximate implementations of rings without non-enclosure se-
mantics, such “fields” of floating-point numbers, but does not treat them as genuine
rings or fields (e.g. gr_ctx_is_field returns false).

Generic rings in FLINT 11

8 Error handling

Since C lacks proper support for exceptions and workarounds emulating exceptions
would be unsafe with FLINT’s memory model, we implement error handling using
return values and manual control flow. Most GR methods return a status code which is
set to GR_SUCCESS (= 0) if an operation completes successfully. In the event of an error,
one or both of the following flag bits will be set:

• A domain error (GR_DOMAIN flag) indicates that an operation cannot be assigned a
mathematically meaningful result with the target type, for example:

– Dividing by zero in a ring (with the possible exception of the zero ring, where
one may unambiguously define 0/0 = 0).

– More generally, dividing elements which lack a quotient, e.g. 1/2 in Z.
– Extracting the square root of a non-square element e.g.

√
−1 in R.

– Solving an inconsistent system of linear equations.
– Evaluating a meromorphic function on C at a pole.
– Accessing a vector out of bounds.
– Multiplying matrices of incompatible shape.

• An unable error (GR_UNABLE flag) indicates that we cannot compute a result for
implementation reasons, even if the result in principle may be mathematically well-
defined, for example:

– The result is too large to store in memory (e.g. expanding (1 + -)10100).
– The result does not fit the finite representation of the target type (e.g. converting

265 to an implementation of Z that uses 64-bit integers).
– The used algorithm requires distinguishing between G = 0 and G ≠ 0, and has no

fallback strategy when the truth value cannot be decided.
– The computation would be unreasonably long (e.g. factoring a 2048-bit integer).
– No algorithm is implemented for this operation.

Status flags from consecutive operations can be bitwise OR:ed and passed forward
for later error handling. We note that a pure GR_DOMAIN flag arising from a sequence of
operations certainly indicates a domain error, while a combination of GR_UNABLE and
GR_DOMAIN flags must be interpreted as an unable error.

Some GR algorithms handle and internally recover from (certain classes of) errors;
in most cases, status codes will simply be propagated to the user. GR functions are
marked with the warn_unused_result attribute allowing compilers like GCC to emit
a warning if the user (or FLINT developer) accidentally discards a status code.

The distinction between domain and unable errors can be useful in high-level algo-
rithms. For example, suppose that we try to compute �−1 given a matrix � ∈ R=×=. We
can try a combination of algorithms and representations (inexact, exact), starting with
one optimized for speed. A domain error shows that � is not invertible in which case we
can terminate; an unable error suggests that a slower but more powerful algorithm may
succeed. This ability is closely related to the use of triple-valued logic for predicates
discussed previously.

12 Fredrik Johansson

An important point is that we report domain errors instead of extending mathemat-
ically well-defined algebraic structures with inappropriate special values. While the
FLINT type arb supports the special values +∞, −∞ and NaN (“not-a-number”) via
its non-generic interface, the GR implementation of R based on arb prevents creating
those values (but does allow creating the interval (0 ± ∞) representing a completely
unknown real number).

We could in principle avoid domain errors by assigning “junk values” to the unde-
fined cases of partial functions. For example, we could define a total division on Q such
that 1/0 = 0. This is the standard approach taken in many proof assistants. Despite sev-
eral potential benefits, we have not opted for such a solution since this gives up a useful
ability to catch logical errors and bad user input. In any case, there would be little sense
in returning junk values for unable errors; here we believe that the GR approach to error
handling is reasonable.

Currently, GR lacks the ability to recover from out-of-memory conditions in builtin
FLINT types such as fmpz, but this is a possible future improvement which in principle
poses no problem for the GR programming model. Catching excessively large results
is currently supported for the qqbar and ca types for exact algebraic, real and com-
plex numbers: for example, one can prevent qqbar from generating algebraic numbers
whose minimal polynomial over Z exceeds a prescribed degree or height bound. Such
“evaluation bounds” are in many ways analogous to precision bounds for inexact rep-
resentations and useful in hybrid algorithms where one ideally wants to be able to try
several solution tactics with the ability to recover gracefully from a poorly-performing
tactic rather than crashing, hanging, or returning bogus results

9 Correctness testing

We try to ensure correctness in GR through randomized testing: we generate many ran-
dom elements and verify that supported operations satisfy all expected properties (com-
mutativity, associativity, functional equations, etc). Ring implementations are expected
to provide non-uniform random element generators for testing purposes to increase the
chances of hitting corner cases. We note that generically written test routines in GR are
compatible with virtually any particular ring implementation thanks to our unified error
handling and support for inexact representation.

One of the clear drawbacks of pointer-based generic programming in C is that one
gives up type safety and memory safety guarantees possible in languages with builtin
generic support. In the author’s experience, GR code does require a somewhat higher
debugging effort than non-generic FLINT code, but the reliability of GR code with
corresponding unit tests is probably on par with other parts of FLINT.

There is currently much interest in formally verified computer algebra, with several
avenues of research:

• One possible approach is to implement a computer algebra system from scratch di-
rectly in a proof assistant like Lean or Coq. While the “calculational” abilities of
proof assistants have improved remarkably in recent years (see [22, 23, 9] for some

Generic rings in FLINT 13

examples) they remain well behind the capabilities traditional computer algebra sys-
tems and mathematical libraries.

• A different approach is to to formally verify existing libraries or use proof assistants
to generate library code (e.g. in C) which is correct by construction [4, 25, 24].

• Yet another approach is to let “unsafe” systems like FLINT produce results which
can be certified a posteriori in a formally verified way, e.g. for polynomial factoriza-
tion [8].

The author has been asked on several occasions about the prospects of formally veri-
fying parts of FLINT. Doing so from the bottom up seems extremely difficult due to the
extensive entanglement between low-level optimizations and mathematical logic in the
FLINT codebase. However, GRmay help by creating two cleanly separated levels of ab-
straction. It should be feasible to develop a formal specification of the GR programming
interface and formally verify some high-level generic GR algorithms, independently of
which one could attempt to formally verify some specific ring implementations. Alter-
natively, we believe that ideas from FLINT and GR could be used in certified libraries
developed from a clean slate.

Acknowledgements Fredrik Johansson has been supported by the ANR grant NuSCAP (ANR-20-
CE-48-0014). We give special recognition to Nicolas Brisebarre (PI of NuSCAP) whose vision for
a mathematical computation system with support for multiple levels of fidelity has helped motivate
the development of GR. The author also thanks all FLINT contributors, with special thanks to Albin
Ahlbäck for his help with assembly optimizations and general maintenance of the project.

References

1. John Abbott and Anna M Bigatti. CoCoALib: a C++ library for doing computations in commuta-
tive algebra, 2019.

2. Albin Ahlbäck and Fredrik Johansson. Fast basecases for arbitrary-size multiplication. working
paper or preprint, January 2025.

3. Reimer Behrends, Kevin Hammond, Vladimir Janjic, Alexander Konovalov, Steve Linton,
Hans‐Wolfgang Loidl, Patrick Maier, and Phil Trinder. HPC‐GAP: engineering a 21st‐century
high‐performance computer algebra system. Concurrency and Computation: Practice and Expe-
rience, 28(13):3606–3636, January 2016.

4. Y. Bertot, N. Magaud, and P. Zimmermann. A proof of GMP square root. Journal of Automated
Reasoning, 29(3-4):225–252, 2002.

5. Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. Julia: A fresh approach to
numerical computing. SIAM review, 59(1):65–98, 2017.

6. Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system I: The user
language. Journal of Symbolic Computation, 24(3-4):235–265, 1997.

7. Alexander Brandt, Robert H. C. Moir, and Marc Moreno Maza. Employing C++ Templates in the
Design of a Computer Algebra Library, page 342–352. Springer International Publishing, 2020.

8. James H. Davenport. Towards verified polynomial factorisation. In 2024 26th International Sym-
posium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), page 45–48.
IEEE, September 2024.

9. James Harold Davenport. First steps towards computational polynomials in Lean, 2024.
10. Wolfram Decker, Christian Eder, Claus Fieker, Max Horn, and Michael Joswig, editors. The Com-

puter Algebra System OSCAR: Algorithms and Examples, volume 32 of Algorithms and Compu-
tation in Mathematics. Springer, 1 edition, 2025.

14 Fredrik Johansson

11. WolframDecker, Gert-MartinGreuel, Gerhard Pfister, andHans Schönemann. Singular 4-4-0—
A computer algebra system for polynomial computations. http://www.singular.uni-kl.de,
2024.

12. Jean-Guillaume Dumas, Thierry Gautier, Mark Giesbrecht, Pascal Giorgi, Bradford Hovinen,
Erich Kaltofen, B David Saunders, Will J Turner, Gilles Villard, et al. LinBox: A generic li-
brary for exact linear algebra. In Proceedings of the 2002 International Congress of Mathematical
Software, Beijing, China, pages 40–50, 2002.

13. Claus Fieker, William Hart, Tommy Hofmann, and Fredrik Johansson. Nemo/Hecke: computer
algebra and number theory packages for the Julia programming language. In Proc. of the 42nd Intl.
Symposium on Symbolic and Algebraic Computation, ISSAC ’17, pages 157–164. ACM, 2017.

14. FLINT developers. FLINT: Fast Library for Number Theory, 2025. Version 3.3.0, http://
flintlib.org.

15. Laurent Fousse, Guillaume Hanrot, Vincent Lefèvre, Patrick Pélissier, and Paul Zimmermann.
MPFR: A multiple-precision binary floating-point library with correct rounding. ACM Transac-
tions on Mathematical Software, 33(2):13:1–13:15, June 2007.

16. GMP development team. GMP: The GNU Multiple Precision Arithmetic Library. http:
//gmplib.org, 2024.

17. William B. Hart. ANTIC: Algebraic number theory in C. Computeralgebra-Rundbrief: Vol. 56,
2015.

18. Fredrik Johansson. Arb: Efficient arbitrary-precision midpoint-radius interval arithmetic. IEEE
Transactions on Computers, 66(8):1281–1292, August 2017.

19. Fredrik Johansson. Faster arbitrary-precision dot product and matrix multiplication. In 2019 IEEE
26th Symposium on Computer Arithmetic (ARITH). IEEE, June 2019.

20. Fredrik Johansson. Calcium: computing in exact real and complex fields. In ISSAC ’21, 2021.
21. Xin Li, Marc MorenoMaza, and Éric Schost. On the virtues of generic programming for symbolic

computation. In Computational Science - ICCS 2007, page 251–258. Springer Berlin Heidelberg,
2007.

22. Assia Mahboubi. Machine-checked computer-aided mathematics. Habilitation à diriger des
recherches, Université de Nantes (UN), Nantes, FRA., January 2021.

23. Guillaume Melquiond. Formal Verification for Numerical Computations, and the Other Way
Around. Habilitation à diriger des recherches, Université Paris Sud, Orsay, France, 2019.

24. Guillaume Melquiond and Josué Moreau. A safe low-level language for computer algebra
and its formally verified compiler. Proceedings of the ACM on Programming Languages,
8(ICFP):121–146, August 2024.

25. Guillaume Melquiond and Raphaël Rieu-Helft. A Why3 framework for reflection proofs and its
application to GMP’s algorithms. In Automated Reasoning: 9th International Joint Conference,
IJCAR 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17,
2018, Proceedings 9, pages 178–193. Springer, 2018.

26. Aaron Meurer et al. SymPy: symbolic computing in Python. PeerJ Computer Science, 3:e103,
January 2017.

27. The PARIGroup, University of Bordeaux. PARI/GP version 2.17.2, 2025. http://pari.math.
u-bordeaux.fr/.

28. The Sage Developers. SageMath, the Sage Mathematics Software System (Version 10.6), 2025.
https://www.sagemath.org.

29. J. van der Hoeven, G. Lecerf, B. Mourrain, P. Trébuchet, J. Berthomieu, D. N. Diatta, and
A. Mantzaflaris. Mathemagix: the quest of modularity and efficiency for symbolic and certified
numeric computation? ACM Communications in Computer Algebra, 45(3/4):186–188, January
2012. http://mathemagix.org.

30. A. Waksman. On Winograd’s algorithm for inner products. IEEE Transactions on Computers,
C–19(4):360–361, April 1970.

http://www.singular.uni-kl.de
http://flintlib.org
http://flintlib.org
http://gmplib.org
http://gmplib.org
http://pari.math.u-bordeaux.fr/
http://pari.math.u-bordeaux.fr/
https://www.sagemath.org
http://mathemagix.org

	Generic rings in FLINT
	Fredrik Johansson
	Introduction
	Feature overview
	Basic data structures and interface
	Type system
	Performance and vectorization
	Specialization for parametric types
	Inexact elements
	Error handling
	Correctness testing
	References
	References

