Faster arbitrary-precision dot product and matrix multiplication

Fredrik Johansson

Inria Bordeaux

26th IEEE Symposium on Computer Arithmetic (ARITH 26) Kyoto, Japan June 10, 2019

Arbitrary-precision arithmetic

Precision: $p \ge 2$ bits (can be thousands or millions)

► Floating-point numbers

3.14159265358979323846264338328

▶ Ball arithmetic (mid-rad interval arithmetic)

```
[3.14159265358979323846264338328 \pm 8.65 \cdot 10^{-31}]
```

Why?

- Computational number theory, computer algebra
- Dynamical systems, ill-conditioned problems
- Verifying/testing numerical results/methods

This work: faster arithmetic and linear algebra

CPU time (seconds) to multiply two real 1000×1000 matrices

	p=53	p = 106	p = 212	p = 848
BLAS	0.08			
QD		11	111	
MPFR	36	44	110	293
Arb* (classical)	19	25	76	258
Arb* (block)	3.6	5.6	8.2	27

^{*} With ball coefficients Arb version 2.16 – http://arblib.org

Two important requirements

- ► True arbitrary precision; inputs and output can have mixed precision; no restrictions on the exponents
- ▶ Preserve structure: near-optimal enclosures for each entry

$$\begin{pmatrix} [1.23 \cdot 10^{100} \pm 10^{80}] & -1.5 & 0 \\ 1 & [2.34 \pm 10^{-20}] & [3.45 \pm 10^{-50}] \\ 0 & 2 & [4.56 \cdot 10^{-100} \pm 10^{-130}] \end{pmatrix}$$

$$\sum_{k=1}^N a_k b_k, \qquad a_k, b_k \in \mathbb{R} ext{ or } \mathbb{C}$$

Kernel in basecase ($N \lesssim 10$ to 100) algorithms for:

- Matrix multiplication
- Triangular solving, recursive LU factorization
- Polynomial multiplication, division, composition
- Power series operations

Dot product as an atomic operation

The old way:

```
arb_mul(s, a, b, prec);
for (k = 1; k < N; k++)
    arb_addmul(s, a + k, b + k, prec);</pre>
```

The new way:

```
arb_dot(s, NULL, 0, a, 1, b, 1, N, prec); (\text{More generally, computes } s = s_0 + (-1)^c \sum_{k=0}^{N-1} a_{k \cdot \text{astep}} b_{k \cdot \text{bstep}})
```

```
arb_dot - ball arithmetic, real
acb_dot - ball arithmetic, complex
arb_approx_dot - floating-point, real
acb_approx_dot - floating-point, complex
```

Numerical dot product

Approximate (floating-point) dot product:

$$s = \sum_{k=1}^{N} a_k b_k + \varepsilon, \qquad |\varepsilon| \approx 2^{-p} \sum_{k=1}^{N} |a_k b_k|$$

Ball arithmetic dot product:

$$[m \pm r] \supseteq \sum_{k=1}^{N} [m_k \pm r_k] [m'_k \pm r'_k]$$

$$m = \sum_{k=1}^{N} m_k m_k' + \varepsilon, \qquad r \geq |arepsilon| + \sum_{k=1}^{N} |m_k| r_k' + |m_k'| r_k + r_k r_k'$$

Representation of numbers in Arb (like MPFR)

Arbitrary-precision floating-point numbers:

$$(-1)^{\text{sign}} \cdot 2^{\exp} \cdot \sum_{k=0}^{n-1} b_k 2^{64(k-n)}$$

Limbs b_k are 64-bit words, normalized:

$$0 \le b_k < 2^{64}, \quad b_{n-1} \ge 2^{63}, \quad b_0 \ne 0$$

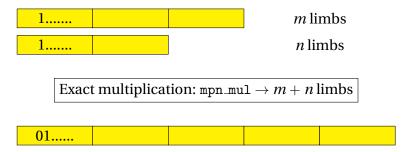
All core arithmetic operations are implemented using word manipulations and low-level GMP (mpn layer) function calls

Radius: 30-bit unsigned floating-point

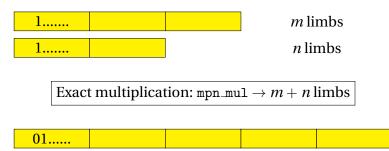
Arbitrary-precision multiplication

1		<i>m</i> limbs
1		n limbs

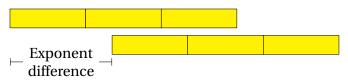
Arbitrary-precision multiplication

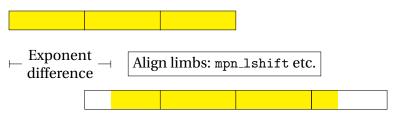


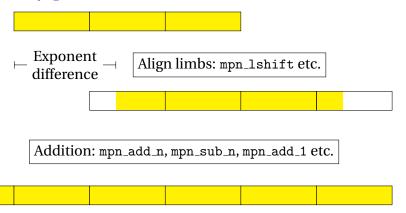
Arbitrary-precision multiplication

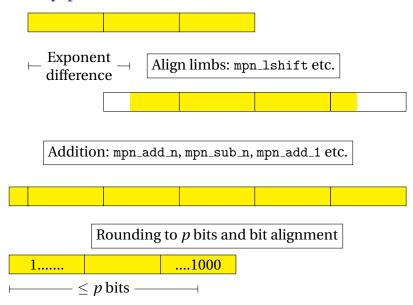


Rounding to *p* bits and bit alignment







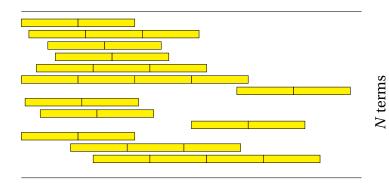


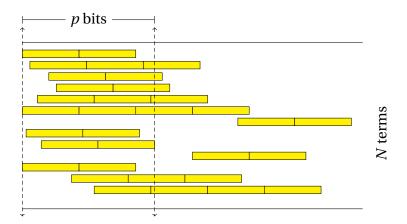
First pass: inspect the terms

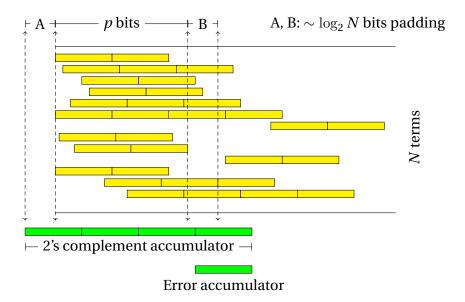
- Count nonzero terms
- Bound upper and lower exponents of terms
- Detect Inf/NaN/overflow/underflow (fallback code)

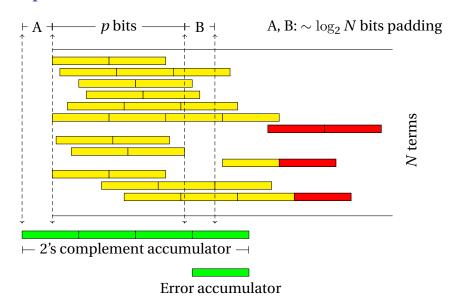
Second pass: compute the dot product!

- Exploit knowledge about exponents
- Single temporary memory allocation
- Single final rounding and normalization









Technical comments

Radius dot products (for ball arithmetic):

Dedicated code using 64-bit accumulator

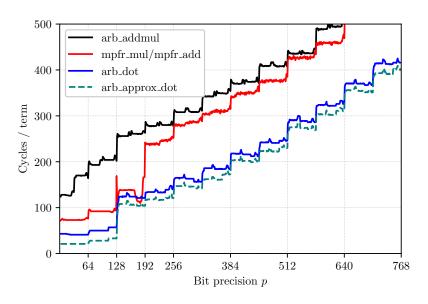
Special sizes:

- ▶ Inline ASM instead of GMP function calls for $\leq 2 \times 2$ limb product, ≤ 3 limb accumulator
- Mulder's mulhigh (via MPFR) for 25 to 10000 limbs

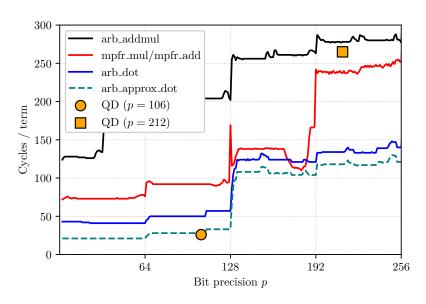
Complex numbers:

- ightharpoonup Essentially done as two length-2N real dot products
- ➤ Karatsuba-style multiplication (3 instead of 4 real muls) for ≥ 128 limbs

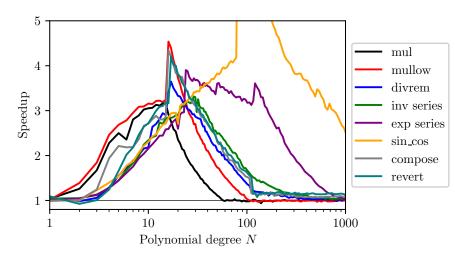
Dot product performance



Dot product performance

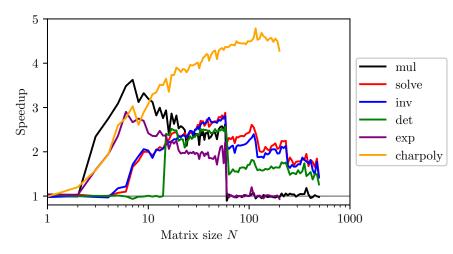


Dot product: polynomial operations speedup in Arb



(Complex coefficients, p = 64 bits)

Dot product: matrix operations speedup in Arb



(Complex coefficients, p = 64 bits)

Matrix multiplication (large *N*)

Same ideas as polynomial multiplication in Arb:

- 1. $[A \pm a][B \pm b]$ via three multiplications AB, |A|b, a(|B|+b)
- 2. Split + scale matrices into blocks with uniform magnitude
- 3. Multiply blocks of A, B exactly over \mathbb{Z} using FLINT
- 4. Multiply blocks of |A|, b, a, |B| + b using hardware FP

Matrix multiplication (large *N*)

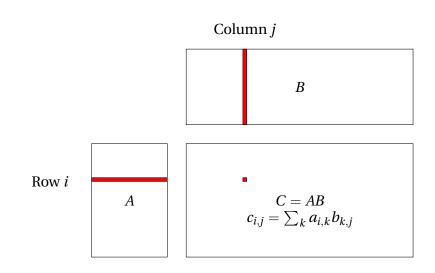
Same ideas as polynomial multiplication in Arb:

- 1. $[A \pm a][B \pm b]$ via three multiplications AB, |A|b, a(|B|+b)
- 2. Split + scale matrices into blocks with uniform magnitude
- 3. Multiply blocks of A, B exactly over \mathbb{Z} using FLINT
- 4. Multiply blocks of |A|, b, a, |B|+b using hardware FP

Where is the gain?

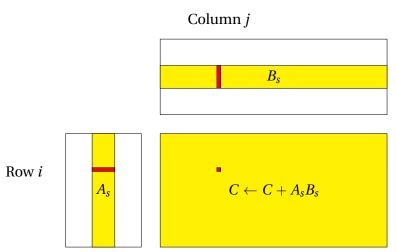
- Integers and hardware FP have less overhead
- ► Multimodular/RNS arithmetic (60-bit primes in FLINT)
- ► Strassen $O(N^{2.81})$ matrix multiplication in FLINT

Matrix multiplication



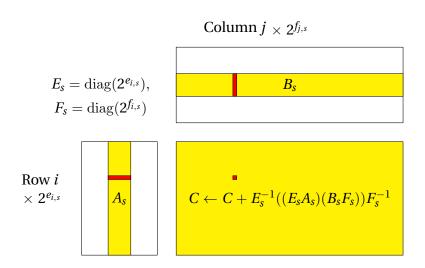
Block matrix multiplication

Choose blocks A_s , B_s (indices $s \subseteq \{1, ..., N\}$) so that each row of A_s and column of B_s has a small internal exponent range



Block matrix multiplication, scaled to integers

Scaling is applied internally to each block A_s , B_s



Uniform and non-uniform matrices

Uniform matrix, N = 1000

p	Classical	Block	Number of blocks	Speedup
53	19 s	3.6 s	1	5.3
212	76 s	8.2 s	1	9.3
3392	1785 s	115 s	1	15.5

Pascal matrix, N=1000 (entries $A_{i,j}=\pi\cdot {i+j\choose j}$)

p	Classical	Block	Number of blocks	Speedup
53	12 s	20 s	10	0.6
212	43 s	35 s	9	1.2
3392	1280 s	226 s	2	5.7

Approximate and certified linear algebra

Three approaches to linear solving Ax = b:

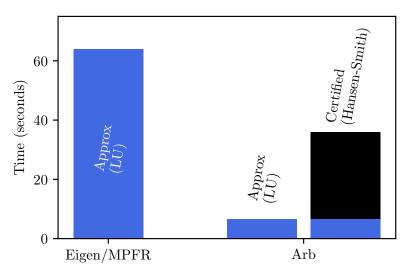
- ► Gaussian elimination in floating-point arithmetic: stable if *A* is well-conditioned
- Gaussian elimination in interval/ball arithmetic: unstable for generic well-conditioned A (lose O(N) digits)
- ▶ Approx + certification: $3.141 \rightarrow [3.141 \pm 0.001]$

Example: Hansen-Smith algorithm

- 1. Compute $R \approx A^{-1}$ approximately
- 2. Solve (RA)x = Rb in interval/ball arithmetic

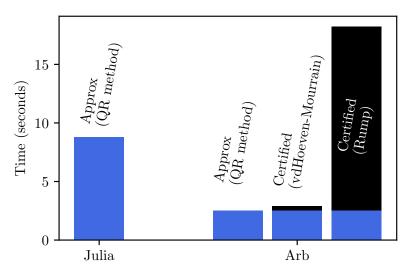
Linear solving

Solving a dense real linear system Ax = b (N = 1000, p = 212)



Eigenvalues

Computing all eigenvalues and eigenvectors of a nonsymmetric complex matrix ($N=100,\,p=128$)



Conclusion

Faster arbitrary-precision arithmetic, linear algebra

- ► Handle dot product as an atomic operation, use instead of single add/muls where possible $(1 5 \times \text{speedup})$
- Accurate and fast large-N matrix multiplication using scaled integer blocks ($\approx 10 \times \text{speedup}$)
- Higher operations reduce well to dot product (small N), matrix multiplication (large N)

Future work ideas

- Correctly rounded dot product, for MPFR (easy)
- ► Horner scheme (in analogy with dot product)
- Better matrix scaling + splitting algorithm