Faster arbitrary-precision dot product and
matrix multiplication

Fredrik Johansson

Inria Bordeaux

26th IEEE Symposium on Computer Arithmetic (ARITH 26)
Kyoto, Japan
June 10, 2019

1/26

Arbitrary-precision arithmetic
Precision: p > 2 bits (can be thousands or millions)
» Floating-point numbers
3.14159265358979323846264338328
» Ball arithmetic (mid-rad interval arithmetic)

[3.14159265358979323846264338328 + 8.65 - 103!

Why?
» Computational number theory, computer algebra
» Dynamical systems, ill-conditioned problems
» Verifying/testing numerical results/methods

2/26

This work: faster arithmetic and linear algebra

CPU time (seconds) to multiply two real 1000 x 1000 matrices

p=53 p=106 p=212 p=2848
BLAS 0.08
QD 11 111
MPFR 36 44 110 293
Arb* (classical) 19 25 76 258
Arb* (block) 3.6 5.6 8.2 27
* With ball coefficients

Arb version 2.16 —http://arblib.org

3/26

http://arblib.org

Two important requirements

» True arbitrary precision; inputs and output can have
mixed precision; no restrictions on the exponents
> Preserve structure: near-optimal enclosures for each entry

[1.23-1010 4 1089] -1.5 0
1 [2.34 +10729] [3.45 4+ 10759]
0 2 [4.56 - 107100 + 107130)

4/26

Dot product

N
Zakbk, ay., bk eRorC
k=1

Kernel in basecase (IV < 10 to 100) algorithms for:
» Matrix multiplication
» Triangular solving, recursive LU factorization
» Polynomial multiplication, division, composition
> Power series operations

5/26

Dot product as an atomic operation

The old way:
arb_mul(s, a, b, prec);
for (k = 1; k < N; k++)
arb_addmul(s, a + k, b + k, prec);
The new way:

arb_dot(s, NULL, O, a, 1, b, 1, N, prec);

(More generally, computes s = sp + (—1)¢ SN Pl 0 Aj.astep Pk-bstep)

arb_dot — ball arithmetic, real

acb_dot — ball arithmetic, complex
arb_approx_dot — floating-point, real
acb_approx_dot — floating-point, complex

6/26

Numerical dot product

Approximate (floating-point) dot product:

N N
s:Zakbk—i—s, le] ~ 2”’Z|akbk\
k=1

k=1

Ball arithmetic dot product:

N
D) [my % r][mp £ 1]
k=1

N N

m=>"mmj +e, r> e+ > Imglr + [mire + rer
k=1 k=1

7126

Representation of numbers in Arb (like MPFR)

Arbitrary-precision floating-point numbers:

n—1
(_l)sign . 9eXp | Z bk264(k—n)
k=0
Limbs by are 64-bit words, normalized:

0<bp<2% by1>2% b#0

All core arithmetic operations are implemented using word
manipulations and low-level GMP (mpn layer) function calls

Radius: 30-bit unsigned floating-point

8/26

Arbitrary-precision multiplication

| 1. | | ‘ m limbs

| 1. | \ nlimbs

Arbitrary-precision multiplication

| 1. | | ‘ m limbs

| 1. | \ nlimbs

Exact multiplication: mpn mul — m + nlimbs

| 0l...... | | |

Arbitrary-precision multiplication

| 1. | | ‘ m limbs

| 1. | \ nlimbs

Exact multiplication: mpn mul — m + nlimbs

ol | | | | |

Rounding to p bits and bit alignment

L..... | | ...1000 |

———— < pbits ——

9/26

Arbitrary-precision addition

Exponent ‘ |

difference

Arbitrary-precision addition

Exponent
difference

Align limbs: mpn_1shift etc.

|

Arbitrary-precision addition

Exponent
difference

Align limbs: mpn_1shift etc.

| | |

Addition: mpn_add n, mpn_sub_n, mpn_add_1 etc.

Arbitrary-precision addition

Exponent
difference

| | |

Align limbs: mpn_1shift etc.

Addition: mpn_add n, mpn_sub_n, mpn_add_1 etc.

Rounding to p bits and bit alignment

| 1. \ | ...1000 |

——— < pbits ——

10/ 26

Dot product

First pass: inspect the terms

» Count nonzero terms
» Bound upper and lower exponents of terms
» Detect Inf/NaN/overflow/underflow (fallback code)

Second pass: compute the dot product!

» Exploit knowledge about exponents
» Single temporary memory allocation
» Single final rounding and normalization

11/26

Dot product

N terms

Dot product

SuLIa) \J

Dot product

eTo]

£

= SULIa) N
<

o,

” _

R

3

N —
N —
=Y0)

K |

2

& |
A || —
SN B B | m R g B | N
B ||
+¢—-t-——FtH-H4tFF---r+--- = -
8 = |
Q| N L
DR I N) I =
<

A e ____

— 2’s complement accumulator —

Error accumulator

Dot product

eTo]

£

= SULIa) N

<

o,

2

3

Z

N

o0

2

2

&

An —

SN B B | o IRt 1 I
B ||
+¢—-t-——FtH-H4tFF---r+--- = -
8 = |

Q| N L
DR I N) I =
<
el ____

— 2’s complement accumulator —

Error accumulator

12/26

Technical comments

Radius dot products (for ball arithmetic):

» Dedicated code using 64-bit accumulator

Special sizes:

» Inline ASM instead of GMP function calls for < 2 x 2 limb
product, < 3 limb accumulator

» Mulder’s mulhigh (via MPFR) for 25 to 10000 limbs
Complex numbers:

» Essentially done as two length-2N real dot products

» Karatsuba-style multiplication (3 instead of 4 real muls)
for > 128 limbs

13/26

Dot product performance

500 e
— arb_addmul '_J
—— mpfr_mul/mpfr_add -~
400 9 == arb_dot
=== arb_approx_dot
% 300 A
g
~
38
[
> 200
100 -
———r—
0 T T T T T T T
64 128 192 256 384 512 640 768

Bit precision p

14 /26

Dot product performance

300
—— arb_addmul
—— mpfr_mul/mpfr_add O
250 A
—— arb_dot
=== arb_approx_dot
= 2007 O QD (p=106)
g O QD (p=212)
150 A ,
i‘)
[
=
o
100 -
50 1
--------- Suinininin © NN
0 T T T
64 128 192 256

Bit precision p

15/26

Dot product: polynomial operations speedup in Arb

mul
mullow
divrem
inv series
exp series
sin_cos
compose
revert

1 10 100 1000
Polynomial degree N

(Complex coefficients, p = 64 bits)

16/ 26

Dot product: matrix operations speedup in Arb

1 10 100 1000
Matrix size N

(Complex coefficients, p = 64 bits)

mul
solve

inv

det

exp
charpoly

17/26

Matrix multiplication (large N)

Same ideas as polynomial multiplication in Arb:
1. [A+al][B+b] via three multiplications AB, |A|b, a(|BHD)
2. Split + scale matrices into blocks with uniform magnitude
3. Multiply blocks of A, B exactly over Z using FLINT
4. Multiply blocks of |Al, b, a, | BHb using hardware FP

18/26

Matrix multiplication (large N)

Same ideas as polynomial multiplication in Arb:
1. [A+al][B+b] via three multiplications AB, |A|b, a(|BHD)
2. Split + scale matrices into blocks with uniform magnitude
3. Multiply blocks of A, B exactly over Z using FLINT
4. Multiply blocks of |Al, b, a, | BHb using hardware FP

Where is the gain?
» Integers and hardware FP have less overhead
» Multimodular/RNS arithmetic (60-bit primes in FLINT)
» Strassen O(N?®!) matrix multiplication in FLINT

18/26

Matrix multiplication

Column j

Row i =
A C = AB
Cij = > Qi kbr

19/26

Block matrix multiplication

Choose blocks A, B (indices s C {1,..., N}) so that each row
of A; and column of B, has a small internal exponent range

Row i

Column j

C < C+ A;Bs

20/26

Block matrix multiplication, scaled to integers

Scaling is applied internally to each block A, B

E; = diag(2%-),
Fy = diag(2fis)

Column j x 2fis

[=

Row i o
X 2‘3&5 As

C + C + E;Y((EsAs)(BsFs))F;!

21/26

Uniform and non-uniform matrices

Uniform matrix, N = 1000

p Classical Block Number of blocks Speedup
53 19s 3.6s 1 5.3

212 76s 82s 1 9.3

3392 1785s 115s 1 15.5

Pascal matrix, N = 1000 (entries A; j = - (iJ]fj))

p Classical Block Number of blocks Speedup
53 12s 20s 10 0.6

212 43s 35s 9 1.2

3392 1280s 226s 2 5.7

22/26

Approximate and certified linear algebra

Three approaches to linear solving Ax = b:

» Gaussian elimination in floating-point arithmetic:
stable if A is well-conditioned

» Gaussian elimination in interval/ball arithmetic:
unstable for generic well-conditioned A (lose O(N) digits)

» Approx + certification: 3.141 — [3.141 + 0.001]

Example: Hansen-Smith algorithm

1. Compute R ~ A~! approximately
2. Solve (RA)x = Rb in interval/ball arithmetic

23/26

Linear solving

Solving a dense real linear system Ax = b (N = 1000, p = 212)

Time (seconds)

Eigen/MPFR Arb

24/26

Eigenvalues

Computing all eigenvalues and eigenvectors of a
nonsymmetric complex matrix (N = 100, p = 128)

Julia Arb

25/26

Conclusion

Faster arbitrary-precision arithmetic, linear algebra

» Handle dot product as an atomic operation, use instead
of single add/muls where possible (1 — 5x speedup)

» Accurate and fast large- N matrix multiplication using
scaled integer blocks (~ 10x speedup)

» Higher operations reduce well to dot product (small N),
matrix multiplication (large N)

Future work ideas
» Correctly rounded dot product, for MPER (easy)
» Horner scheme (in analogy with dot product)

» Better matrix scaling + splitting algorithm

26/26

