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Introduction
Given x € R and B > 0, we want to compute any of the
elementary functions

> exp(X)
> log(x)
» sin(x), cos(x) (often simultaneously)
> atan(x)

with error < 278,

How can we make this fast (in practice) for "large" B?

In computational number theory, we typically care about B
between 100 and 1,000,000.
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Asymptotically fast algorithms (Brent, 1970s)

As usual, the problem is reduced to (fast) integer
multiplication.! This can be achieved in quite different ways.

1. Taylor series + functional equations
O(M(B) log?**(B))
2. The arithmetic-geometric mean (AGM)

O(M(B) log(B))

' Asymptotically M(B) = O(Blog B) (Harvey — van der Hoeven).
Up to a few thousand bits, it is more accurate to assume M(B) = O(B?)
(classical) or M(B) = O(B'®) (Karatsuba).
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Sketch of the Taylor series method

Consider exp(x). The other functions are analogous.

Step 1 (optional): argument reduction

log(2)
=

exp(x) =2Mexp(y), ¥y =x—mlog(2), |y| <

The constant log(2) only needs to be computed once. For
trigonometric functions, = is used.

Step 2: second argument reduction

exp(y) = exp(t)?, t=y/2
ensuring |f| < 27" for some tuning parameter r > 0.
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Sketch of the Taylor series method
Step 3a (used up to B ~ 10%)

N
t2n+f

exp(t) =s+Vvs2+1, s=sinh(t)~ —_—
- (2n+1)!

The sum is evaluated using O(v/N) full-precision multiplications
and O(N) “scalar” operations.

Step 3b (“bit-burst algorithm”, very high precision)

Write exp(t) = exp(t;) - exp(t2) - - - where t; extracts 2/ bits in the
binary expansion of t. Use binary splitting to evaluate

N;
exp t/ Z

n
n

5/26



Sketch of the AGM method

The AGM iteration
agm(Xo, Yo) = nlrgo Xn,  Xng1 = (Xn+ ¥n)/2, Yni1 = VXnYn

converges to B-bit accuracy in O(log B) steps.

The AGM allows computing log(z) for z € C, and by extension
any elementary function.?

MPFR implements real logarithms using

™

T miog(2), s=x.-2Mm> 282
Sagm(1.4/s)  Moe(2), s=x-27>

log(x) ~

2E.g. using Newton iteration to obtain exp(z).
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Taylor vs AGM

Surprising fact: in practice, Taylor series seem to beat the
AGM for reasonable B (at least for B < 10°).

What are the overheads in the AGM?

» One B-bit square root costs roughly 1-3 times a B-bit
multiplication (the overhead depends on the precision), so
each step of the AGM costs roughly 2-4 multiplications.

» Each iteration must be done with full precision.®

» There is more overhead (around 3x) for trigopnometric
functions, since we have to use complex arithmetic.

3We can save a bit of work in the last iterations, but this does not make a
large difference.
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Faster argument reduction

Efficient argument reduction is key to the performance of Taylor
series methods. Note that evaluating

exp(y) = exp(t)?, t=y/2’

costs r full B-bit squarings. In practice r ~ 10 to 100 is optimal.

Question: can we reduce the input to size 2~ more quickly?

This is possible with precomputation. For example, we need
just one multiplication if we have a table of exp(j/2"), 0 < j < 27,
or m multiplications with an m-partite table of m2"/™ entries.

This works extremely well in “medium precision” (up to about
1000 digits) (J. 2015), but eventually gives smaller returns /
uses excessive memory.
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Schénhage’s argument reduction

Some years ago,* Arnold Schénhage presented a method to
compute elementary functions without large tables.

The idea: use “diophantine combinations of incommensurable
logarithms” for argument reduction.

exp(x) = 2°3% exp(t), t=x — clog(2) — dlog(3)

» We can find ¢, d € Z such that t is arbitrarily small.
» 2°39 ¢ Q is computed using binary powering.
» We only need to precompute log(2) and log(3), for any B.

“In talks given at Dagstuhl in 2006 and at RISC in 2011; there are
published talk abstracts, but no paper with details.
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Schénhage’s method for trigopnometric functions

For trigonometric functions, use pairs of Gaussian primes a + bi
instead of rational primes. The formula for one prime:

cos(x) + isin(x) = exp(ix) = exp(i(X — Ca))m, cez

where

o = - [log(a-+ bi)  log(a - bi)] = 2atan <2>

defines a rotation by e = (a + bi)/(a — bi).

For example, we can use the pair atan(1) and atan(1/2),
corresponding to the Gaussian primes 1 +/jand 2 + J,
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Using many primes

Schénhage describes the method as useful for “medium
precision”, with B in the range from around 50 to 3000 bits.

Problem: to achieve [t| < 27", we will generally need
coefficients (exponents) with r/2 bits.

Indeed, r should be at most O(log B) with this method. If r is too
large, we will not save time over r-fold repeated squaring.

Idea for improvement: instead of using a pair of primes, use n
primes for n > 2, giving coefficients around r/n bits.
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Solving the inhomogeneous integer relation problem

Problem: given real numbers x and a4, ..., an and a tolerance
27", find a small vector (cy, ..., cn) € Z" such that

X X C1aq + ...Chap

with error at most 2.

When P = {p4,...pn} is a set of prime numbers and
aj = log(pi), a solution yields a P-smooth rational approximation

exp(x) ~ pi'---pr € Q

with small numerator and denominator.
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Solving the inhomogeneous integer relation problem

Idea: use LLL to solve

CoX + Ciaq + ...+ Chap = 0.

Unfortunately, this will generally give a denominator ¢y # +1.

Also, running LLL each time we want to evaluate an elementary
function will be too slow!
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Solving the inhomogeneous integer relation problem
Instead, use LLL to solve the homogeneous problem

Do this with tolerance C~/, for i = 1,2,....5 Each solution yields
an approximate relation

gj = d,-,1oz1 +...dinan, €= O(C_i)

We store tables of the coefficients d; ; and floating-point
approximations of the errors ¢;.

Given x, we now simply reduce with respect to ¢4, e2, €3, . . ..

5Theoretically C = e is optimal, but C = 2 or C = 10 work just as well.
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Numerical example

We generate a relation table for the logarithms of the first
n = 13 primes

P=1{23,5,7,11,13,17,19,23,29,31,37,41}

One line in Pari/GP can do the job:

? n=13; for(i=1, 32, localprec(i+10);
P=vector(n,k,log(prime(k)));
d=lindep(P,i)”; printf("%s %.5g\n", d, d * P7))
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[0

fo, o, 1, 0, -1, 0, -1, 0, 0, 0, 0, 1, 0] -0.
(-1, 0, 0, 0, O, -1, 1, -1, 0, 1, 0, 0, 0] -0.
(-1, 0, 0, 0, -1, 0, 1, -1, 1, -1, 1, 0, 0] -8.
[, o, 1, -1, 0, 1, -1, 1, -1, 0, 0, -1, 1] 9.
o, 1, o, -1, -1, 0, 2, -1, 0, -1, -1, 1, 1] o

[t, -1, 0,1, 1,2, -1, 0, -2, 1, -1, -1, 1]
[t, -1, 0, 1,1, 2, -1, 0, -2, 1, -1, -1, 1]
[t, 0, 4, -1, -2, 0, 0, 2, 0, -2, -2, 1, 1]

(1, 1, 4, 1, -1, 1, -2, -3, 0, -4, 3, 1, 1] -7.

[o, -2, -1, 0, 2, 4, 4, 0, 3, 1, -6, -1, -3]

3
3
4
o, -2, o, o, -2, 0, 0, 2, -4, 4, -1, 1, 0] -2.
7
3
2

[3, 2, -1, -6, 2, 3, -2, -2, 3, 1, 5, -4, -2]

-4, -2, 4, -4, 3,1, 7,0, -3, -4, 4, -7, 3] -9.
[+, -t, -7, -2, 5, 5, -6, 2, 0, -10, 5, 2, 3] -9.
[3, -2, -7, -9, 6, 6, 3, 9, 1, 8, -15, -4, 0] 6.
[-1, 13, -5, -7, -3, -3, -13, 3, 0, -1, 6, -3, 12] -7.
[-2, 3, -2, 2, -15, 16, 4, -7, 11, -15, 0, 9, -4] 8.
[2, o, -9, -11, -5, -11, 21, 9, -9, -4, -1, -4, 13] 5.
6, -9, 0, 9, 9, -2, -4, -22, 4, -7, 0, 5, 11] 4.
(1, -27, 22, -14, -2, 0, 0, -27, -3, -5, 18, 10, 9] -1.
[, 41, -2, 5, -42, 6, -2, 13, 5, 3, -5, 7, -9] -1.
[4, -5, 8, -8, 6, -25, -38, -16, 24, 13, -10, 10, 24] -8.
[4, -5, 8, -8, 6, -25, -38, -16, 24, 13, -10, 10, 24] -8.
[-43, -2, 4, 9, 19, -26, 92, -30, -6, -24, 11, -4, -18] -4.
[8, 38, -4, 34, -31, 60, -75, 31, 44, -32, -1, -43, 17] 2.
[48, -31, 21, -27, 34, -23, -29, 41, -50, -65, 33, 20, 40] 5.
[-41, 8, 67, -84, 7, -22, -58, -35, 17, 58, -18, 13, 40] -7.
[20, 15, 50, -1, 48, 72, -67, -96, 75, 48, -38, -126, 68] 2.
[26, 20, -35, 16, -1, 75, -13, 2, -128, -100, 130, 46, -13] =38
[-26, -20, 35, -16, 1, -75, 13, -2, 128, 100, -130, -46, 13] 3.
[137, -26, 127, 45, -14, -73, -66, -166, 71, 76, 122, -154, 53] =g

0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0] 0.
0, 1

16705
01075
00202

3
63
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Numerical example
We compute exp(v/2 — 1) with precision B = 33220 (10* digits).

Reducing x = v/2 — 1 by the table on the previous slide yields
the 37-smooth approximation exp(v/2 — 1) = (u/v) exp(t) where

u 13651 ) 19463 X 37634
V = 2274 . 3414 . 5187 . 7314 . 14211 {7392 . 2336 . 29369 . 31231

and t ~ —1.57 10732,

Now 148 terms of the Taylor series for sinh(t) yield full accuracy.
Evaluating this series costs 2v/148 ~ 24 full B-bit
multiplications. (The bit-burst algorithm is about as fast here.)

Empirically, the entire evaluation costs roughly 25 full
multiplications. For comparison, the AGM requires 25 iterations.
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Speedup for elementary functions

Arb 2.23 using the new method with n = 13 primes, vs Arb 2.22

exp(x) log(x) cos(x), sin(x) atan(x)
Digits First Repeat| First Repeat| First Repeat| First Repeat
1000 [0.16x 1.43x |0.77x 1.43x |0.18x 1.23x |1.00x 1.00x
2000 [0.22x 2.06x [0.73x 1.81x |0.40x 1.25x |0.75x 2.21x
4000 [0.33x 2.37x [0.983x 1.86x |0.43x 1.62x |0.74x 2.45x
10,000 |0.48x 2.03x |1.05x 1.70x |0.53x 1.89x |0.70x 2.23x
100,000 [0.51x 1.52x [1.25x 1.68x |0.68x 1.61x [0.68x 1.53x
1,000,000({0.51x 1.26x [1.23x 1.39x |0.59x 1.29x |0.67x 1.25x

exp, sin/cos: using Taylor series
log: previously using AGM, now using exp + Newton
atan: previously using Taylor series, now using sin/cos + Newton
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Varying the number of primes n

Bit precision B n  Memory (logs) Time (logs) r Time to evaluate exp(x)
104 0 0.000202
2 2.4 KiB 0.000238 11 0.000183
4 4.9 KiB 0.000240 27 0.000137
8 9.8 KiB 0.000335 52 0.000106
16 19.5KiB 0.000579 83  8.48e-05
32 39.1 KiB 0.00123 86 8.75e-05
64 78.1 KiB 0.00270 72 9.71e-05
10° 0 0.00895
2 24.4 KiB 0.00679 18 0.00747
4 48.8 KiB 0.0068 44 0.00638
8 97.7 KiB 0.00977 71 0.00565
16 195.3 KiB 0.0164 106 0.00534
32 390.6 KiB 0.0337 161  0.00445
64 781.2 KiB 0.0755 240 0.00383
107 0 4.36
2 2.4 MiB 3.02 18 3.89
4 4.8 MiB 3.01 47 3.53
8 9.5 MiB 414 110 3.18
16 19.1 MiB 6.57 222 290
32 38.1 MiB 13.8 338 2.61
64 76.3 MiB 31.3 551 2.39
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Precomputation of logs and arctangents

How can we efficiently compute log(2), log(3), .. ., log(pn)
simultaneously to B-bit precision?

Similarly for atan(1),atan(1/2),...,atan(bn/an)?
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Using Machin-like formulas

Examples:

1 1
atan(1) = % = 4atan<5> — atan <239>

1 1
log(2) = 4atanh<7> - 2atanh<17>

Used together with binary splitting evaluation of the series:
1\ & (=1 1 AN 1
atan(x) —kgomxzﬂw atanh<x) _27(2’(*1)7)(2“1.

We want an argument basis X C Z with small Lehmer measure
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Simultaneous Machin-like formulas
Given P = {p1,...,pn}, find X = {xy,..., xp} such that

log(p1) 2atanh(1/xq)
( : )M( : ), M € Qnxn
log(pn) 2 atanh(1/x;,)
has a solution. Similarly, for Q = {ay + b1i,...,an + bni},
atan(bi/a1) atan(1/x1)
( )M( ), M € Qnxn.
atan(bn/an) atan(1/xp)
Example: a solution for P = {2,3}is X ={7,17}, M = (2,1;3,2):
log(2) = 4 atanh(1/7) + 2atanh(1/17)

log(3) = 6atanh(1/7) + 4 atanh(1/17)

22/26



Finding Machin-like formulas using Gauss’s method
For a finite set of primes p € P:8
XCY, Y={x:x?-1isP-smooth}
For a finite set of Gaussian primes with a% + b? € Q:
XCZ Z={x:x*+1is Q-smooth}

Having Y or Z, we can find solutions X (and then M) using
linear algebra.

Fact: the sets Y and Z are finite for each fixed set P or Q.
Tabulations by Luca and Najman (2010, 2013):

» For the 25 primes p < 100, #Y = 16228.
» For the 22 Gaussian primes with a2 + b? < 100, #Z = 811.

6Since 2atanh(1/x) = log((x + 1)/(x — 1)), we try to write each p € P as
a power-product of P-smooth rational numbers of the form (x +1)/(x — 1).
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Optimal(?) n-term formulas for the first n primes

nl| P X u(X)
1] 2 3 2.09590
2| 23 7,17 1.99601
3| 235 | 31,49 161 1.71531
4 | 2...7 | 251,449, 4801, 8749 1.31908
5 | 2...11 | 851,1079, 4801, 8749, 19601 1.48088
6 2...13 1574, 4801, 8749, 13311, 21295, 246401 1.49710
7 | 2...17 | 8749, 21295, 24751, 28799, 74359, 388961, 672281 1.49235
8 | 2...19 | 57799, 74359, 87361, 388961, 672281, 1419263, 11819521, 23718421 1.40768
13 | 2...41 | 51744295, 170918749, 265326335, 287080366, 362074049, 587270881, 1.42585
831409151, 2470954914, 3222617399, 6926399999, 9447152318,
90211378321, 127855050751
25 | 2...97 | 373632043520429, 386624124661501, 473599589105798, 1.60385

478877529936961, 523367485875499, 543267330048757
666173153712219, 1433006524150291, 1447605165402271,
1744315135589377, 1796745215731101, 1814660314218751,
2236100361188849, 2767427997467797, 2838712971108351,
3729784979457601, 4573663454608289, 9747977591754401,
11305332448031249, 17431549081705001, 21866103101518721,
34903240221563713, 99913980938200001, 332110803172167361,
19182937474703818751
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Optimal(?) n-term formulas for the first n Gaussian

nl| a X w(X)
1] 2 1 oo
2 | 25 3,7 3.27920
3 | 2,513 18, 57, 239 1.78661
4 | 2...17 | 38,57,239,268 2.03480
5 | 2...29 | 38,157,239, 268,307 2.32275
6 | 2...87 | 239,268,307,327,882, 18543 2.20584
7| 2.4 268, 378, 829, 882, 993, 2943, 18543 2.33820
8 | 2...53 | 931,1772,2943, 6118, 34208, 44179, 85353, 485298 201152
13 | 2...101 | 683982, 1984933, 2343692, 2809305, 3014557, 6225244, 6367252, 1.84765
18975991, 22709274, 24208144, 193788912, 201229582, 2189376182
22 | 2...197 | 1479406293, 1892369318, 2112819717, 2189376182, 2701984943, 2.19850
2971354082, 3558066693, 4038832337, 5271470807, 6829998457,
7959681215, 8193535810, 12139595709, 12185104420, 12957904393,
14033378718, 18710140581, 18986886768, 20746901917,
104279454193, 120563046313, 69971515635443
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Things to do

» Detailed complexity analysis.

What is the theoretically optimal number of primes n as a
function of the precision B? Is there a theoretical
asymptotic (constant-factor?) speedup?

» Fine-tuning of various parameters.

» Suggestion by Joris van der Hoeven: in medium precision,
favor doing more additions

» For z € C, it is better to reduce with respect to lattices
instead of separating real and imaginary parts?

> A p-adic version (we can use LLL to precompute relations
S, cilog(pi) = O(p') for reduction).

» Tabulate more Machin-like formulas.
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