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Archimedes (c. 287 BC – c. 212 BC) and π

Using 96-sided polygons, Archimedes proved that

3 +
10

71
< π < 3 +

1

7

or in decimal notation

3.140845 . . . < π < 3.142857 . . .

2 / 53



2000 years of progress. . .

http://en.wikipedia.org/wiki/Chronology_of_computation_of_pi
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From hand calculation to computers

In 1873, William Shanks finished a calculation of π to 707 digits
which had taken him 15 years to complete.

The record stood until 1946.

In fact, only the first 527 digits were correct.

Since the age of digital computers, new records have followed the
increase in computing capacity. Today, a mobile phone can
compute 1 million digits of π in a second.

The current record is 13 300 000 000 000 digits, set by Alexander
Yee and Shigeru Kondo in 2014.
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Use for 16 digits

16-digit precision is standard in software for scientific calculations,
and supported very efficiently in computer hardware.

Not shown to scale.

This is enough to resolve the distance between Earth and the
Sun (150 000 000 km) to within the width of a hair (0.1 mm).

Orbital length C = 2πr
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Use for 40 digits

40 digits allows resolving the observable universe (1027 m) to the
level of detail of a single hydrogen atom (10−10 m).

Not shown to scale.
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Isn’t higher precision completely useless?

Example of a useful invention: Cyclomer, bicycle that can be used
both on land and in water, Paris, 1932.
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Why higher precision is sometimes needed

1. When doing a sequence of approximate calculations, small
errors sometimes quickly add up to much larger errors

2. Extremely large or small numbers sometimes appear in the
mathematical methods used to solve a problem

Some examples from recent research in mathematical physics and
number theory (Bailey and Borwein, 2015):

I Long-term stability of the solar system: 30 digits

I Coulomb n-body atomic systems: 120 digits

I Zeros of the Riemann zeta function: 10 000 digits

I Lattice sums arising from the Poisson equation: 50 000 digits
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The partition number problem

A partition of a number n is a representation of n as a sum of
positive whole numbers.

For example, 3 + 1 + 1 is a partition of n = 5.

Question: given the number n, how many different partitions of n
are there?
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Example

=

5

=

4 + 1

=

3 + 2

=

3 + 1 + 1

=

2 + 2 + 1

=

2 + 1 + 1 + 1

=

1 + 1 + 1 + 1 + 1

There are 7 different partitions of 5.
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Larger numbers...

There are 7 partitions of 5

There are 42 partitions of 10

There are 627 partitions of 20

There are 204226 partitions of 50

There are 190569292 partitions of 100
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Hungarian pengő (1 P, 1926)
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102 pengő (April 1945)

100 pengő
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103 pengő (July 1945)

1000 pengő
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104 pengő (July 1945)

10 000 pengő
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105 pengő (October 1945)

100 000 pengő
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106 pengő (November 1945)

1 000 000 pengő
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107 pengő (November 1945)

10 000 000 pengő
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108 pengő (March 1946)

100 000 000 pengő
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109 pengő (March 1946)

1 000 000 000 pengő
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1010 pengő (April 1946)

10 000 milpengő = 10 000 000 000 pengő

21 / 53



1011 pengő (April 1946)

100 000 milpengő = 100 000 000 000 pengő
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1012 pengő (May 1946)

1 000 000 milpengő = 1 000 000 000 000 pengő
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1013 pengő (May 1946)

10 000 000 milpengő = 10 000 000 000 000 pengő
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1014 pengő (June 1946)

100 000 000 milpengő = 100 000 000 000 000 pengő
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1015 pengő (June 1946)

1 000 000 000 milpengő = 1 000 000 000 000 000 pengő
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1016 pengő (June 1946)

10 000 b.-pengő = 10 000 000 000 000 000 pengő
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1017 pengő (June 1946)

100 000 b.-pengő = 100 000 000 000 000 000 pengő
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1018 pengő (June 1946)

1 million b.-pengő = 1 000 000 000 000 000 000 (1 quintillion)
pengő
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1019 pengő (June 1946)

10 million b.-pengő = 10 000 000 000 000 000 000 (10 quintillion)
pengő
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1020 pengő (June 1946)

100 million b.-pengő = 100 000 000 000 000 000 000 (100
quintillion) pengő

31 / 53



August 1946

On July 31, 1020 pengő was
worth $0.0000000002 USD.

On August 1, Hungary switched
to a new currency, the forint.
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Partitions of 1020

In how many ways can you make change for a 1020-pengő
banknote using stacks of 1-pengő coins?

=

1020

=

99999999999999999999 + 1

. . .

Practical difficulty: a stack of 1020 coins would reach from Earth
to Gliese 581d, an extrasolar planet 20 light years way. If spread
out over France, the coins would reach 100 meters high!
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The answer

The exact number of partitions of 1020 is

1838176508344882 . . . 231756788091448︸ ︷︷ ︸
11 140 086 260 digits

In scientific notation, this is approximately 1.8 · 1011140086259

I computed the exact number in 2014. It took five days, using two
CPU cores and 130 GB of memory.

The method is to deduce the exact value from an extremely precise
numerical approximation. No known methods that only use
exact steps would have been feasible!
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From approximate to exact

Example: how many partitions are there of n = 100?

190568944.78 + 348.871− 2.60 + 0.685 + 0.318 ≈ 190569292.06

For n = 1020, we need to add 1 710 193 158 terms, with a precision
of more than 11 billion digits!

Question: Where do the approximate numbers come from?

Question: How can we be sure that the result is correct?
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Modular forms

Modular forms are among the most important objects studied in
modern number theory. The mathematician Martin Eichler
(1912–1992) is supposed to have said:

There are five elementary arithmetical operations:
addition, subtraction, multiplication, division, and. . .
modular forms.
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Geometry of modular forms

-2.0 -1.5 -1 -0.5 0 0.5 1 1.5 2

0.2
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1.4

37 / 53



Connection between modular forms and partitions

Leonhard Euler (1707–1783) observed that

1

(1− x)(1− x2)(1− x3)(1− x4)(1− x5) · · ·

= 1 + x + 2x2 + 3x3 + 5x4 + 7x5 + 11x6 + 15x7 + . . .

The number in front of xn is the number of partitions of n.

In modern terminology, f (x) = (1− x)(1− x2)(1− x3) · · · is the
modular form which generates the partition numbers.
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The circle method

G. H. Hardy and Srinivasa Ramanujan (1916) developed an
ingenious way to use the geometry of the modular form to
approximate the numbers it generates.

Hans Rademacher (1943) proved that the exact numbers can be
determined when the approximation is made precise enough.

Later generalized to many other types of counting problems.

In 2012, I published a detailed algorithmic analysis (and fast
implementation) of this method for counting partitions.
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Why care about counting partitions?

By looking at tables of computed values, Ramanujan discovered
patterns. For example:

n Number of partitions n Number of partitions

1 1 11 56
2 2 12 77
3 3 13 101
4 5 14 135
5 7 15 176
6 11 16 231
7 15 17 297
8 22 18 385
9 30 19 490
10 42 20 627

This observation opened up a major field of research within
number theory which is still active.
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More uses for modular forms

I Counting things (such as partitions)

I Mathematical proofs (example: Fermat’s Last Theorem,
an + bn = cn has no integer solutions for n > 2)

I Algorithms for prime numbers

I Cryptography
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A real-world application: elliptic curve cryptography

Security properties of an elliptic curve are encoded (in a
complicated way) by a list of numbers called a class polynomial.

Modular form
↓

Approximate class polynomial
(1, 39491306.99 . . . ,−58682638134.02 . . . , 1566028350940383.01 . . .)

↓
Exact class polynomial

(1, 39491307,−58682638134, 1566028350940383)
↓

Proof of security

A class polynomial can have thousands of numbers, each of which
has thousands of digits!
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Numerical computing

Exact points
Computed approximations
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How do we know when we are “close enough”?

Method 1: guess and hope for the best

Method 2: error analysis

Method 3: interval arithmetic
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Interval arithmetic

Exact points
Computed enclosures
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Interval arithmetic

Exact points
Computed enclosures
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Archimedes revisited

Modern methods to compute π are much more efficient. In fact,
the fastest methods are based on modular forms!
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The Lorenz attractor
The Lorenz attractor is a famous example of a chaotic system.

For many years, no one knew whether the Lorenz attractor exists.
In 1998, Stephen Smale named this one of the most challenging
mathematical problems for the next century.

In 2002, Warwick Tucker proved the existence. His proof made
extensive use of interval arithmetic calculations.
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The Kepler conjecture

In 1611, Johannes Kepler conjectured that the highest density that
can be achieved when packing spheres is π/(3

√
2) ≈ 0.74.

The Kepler conjecture was finally proved in 1998 by Thomas
Hales, using extensive interval arithmetic calculations.
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My research

Developing efficient, reliable and general-purpose algorithms
and software for high-precision arithmetic.

Challenge: manipulating high-precision numbers efficiently. Large
numbers must be stored as lists of smaller numbers, for example
314159265358979 = [314, 159, 265, 358, 979].

Challenge: methods for computing complex mathematical
functions (such as modular forms).
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Software

My software for high-precision interval arithmetic (Arb):

I https://github.com/fredrik-johansson/arb/

I Includes code for counting partitions, evaluating modular
forms, and many other things.

I Currently being added to the SageMath computer algebra
system http://sagemath.org/

Other software (+many others):

I MPFR: high-precision floating-point arithmetic
http://www.mpfr.org/

I MPFI: high-precision interval arithmetic
https://perso.ens-lyon.fr/nathalie.revol/software.html

I Pari/GP: http://pari.math.u-bordeaux.fr/
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Take-home message

1. Some applications require computing with a precision of 100,
1000, 10000 or more digits.

2. For some mathematical problems, the best way to get an exact
solution is to compute an approximate solution.

3. Interval arithmetic is useful – a mathematically rigorous way to
do numerical computations.
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The end

There are 1011 stars in the galaxy. That used to be a
huge number. But it’s only a hundred billion. It’s less
than the national deficit! We used to call them
astronomical numbers. Now we should call them
economical numbers.

– Richard Feynman
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