Complex integration in Arb

Fredrik Johansson Inria Bordeaux

SCAN 2018 Waseda University, Tokyo, Japan 2018-09-11

Introduction

Arb (http://arblib.org) – open source C library for arbitrary-precision ball arithmetic

Real numbers:

[3.141592653589793238462643 +/- 4.03e-25]

Complex numbers:

[-0.200293 +/- 8.48e-7] + [0.979736 +/- 3.44e-7]*I

+ polynomials, matrices, special functions...

Rigorous numerical integration in Arb

F.J. Numerical integration in arbitrary-precision ball arithmetic. ICMS 2018.

Documentation: http://arblib.org/acb_calc.html Demo: examples/integrals.c

Rigorous numerical integration in Arb

F.J. Numerical integration in arbitrary-precision ball arithmetic. ICMS 2018.

Documentation: http://arblib.org/acb_calc.html Demo: examples/integrals.c

High-level interfaces in SageMath* and Nemo.jl. Example: $\int_0^1 \cos(x) \sin(x) dx$

sage: C = ComplexBallField(100)
sage: C.integral(lambda x, _: cos(x) * sin(x), 0, 1)
[0.35403670913678559674939205737 +/- 8.89e-30]

*Thanks to Marc Mezzarobba and Vincent Delecroix

Mathematica NIntegrate: 0.209736

Mathematica NIntegrate: Octave quad: Sage numerical_integral: SciPy quad: 0.209736 0.209736, error estimate 10^{-9} 0.209736, error estimate 10^{-14} 0.209736, error estimate 10^{-9}

0.4

Mathematica NIntegrate: Octave quad: Sage numerical_integral: SciPy quad: mpmath quad:

0.2

0.0

0.0

0.209736 0.209736, error estimate 10^{-9} 0.209736, error estimate 10^{-14} 0.209736, error estimate 10^{-9} 0.209819

0.8

1.0

0.6

Mathematica NIntegrate: Octave quad: Sage numerical_integral: SciPy quad: mpmath quad: Pari/GP intnum:

0.0

0.209736 0.209736, error estimate 10^{-9} 0.209736, error estimate 10^{-14} 0.209736, error estimate 10^{-9} 0.209819 0.211316

0.4

Mathematica NIntegrate: Octave quad: Sage numerical_integral: SciPy quad: mpmath quad: Pari/GP intnum: Actual value:

0.2

0.0

0.0

0.209736 0.209736, error estimate 10^{-9} 0.209736, error estimate 10^{-14} 0.209736, error estimate 10^{-9} 0.209819 0.211316 0.210803

0.8

1.0

0.6

Another example: violent oscillation

S. Rump (2010) noticed that MATLAB's quad returned the incorrect 0.2511 after 1 second of computation.

Rump's INTLAB gives [0.34740016, 0.34740018] in about 1 s

Another example: violent oscillation

S. Rump (2010) noticed that MATLAB's quad returned the incorrect 0.2511 after 1 second of computation.

Rump's INTLAB gives [0.34740016, 0.34740018] in about 1 s

Arb at 64, 333, and 3333 bits:

[0.34740017265725 +/- 3.34e-15] # 0.004 s [0.34740017265... +/- 5.31e-96] # 0.01 s [0.34740017265... +/- 2.41e-999] # 1 s

Yet another example: a monster

64-bit precision:

[+/- 5.45e+3]

time 0.14 s

Yet another example: a monster

64-bit precision:

[+/- 5.45e+3] # time 0.14 s

[0.0986517044784 +/- 4.46e-14] # time 5 s

333-bit precision:

[0.09865170447836520611965824976485985650416962079238449145 10919068308266804822906098396240645824 +/- 6.28e-95] # 268 s

Brute force interval integration

$$\int_{a}^{b} f(x) dx \in (b-a)f([a,b]) + \text{adaptive subdivision of } [a,b]$$

This is simple and general, but we need $2^{O(p)}$ evaluations to achieve *p*-bit accuracy!

Efficient integration of analytic functions

We can achieve *p*-bit accuracy with n = O(p) work.

Approximation:

 $O(x^n)$ Taylor series $\int \sum_{k=0}^{n-1} a_k x^k = \sum_{k=0}^{n-1} a_k \frac{x^{k+1}}{k+1}$

n-point quadrature $\int f(x) dx \approx \sum_{k=1}^{n} w_k f(x_k)$

Error bounds:

Using derivatives $f^{(n)}$ on [a, b]

Using |f| on a complex domain around [a, b]

Efficient integration of analytic functions

We can achieve *p*-bit accuracy with n = O(p) work.

Approximation:

 $O(x^n)$ Taylor series $\int \sum_{k=0}^{n-1} a_k x^k = \sum_{k=0}^{n-1} a_k \frac{x^{k+1}}{k+1}$

n-point quadrature
$$\int f(x)dx \approx \sum_{k=1}^{n} w_k f(x_k)$$

Error bounds:

Using derivatives $f^{(n)}$ on [a, b]

Using |f| on a complex domain around [a, b]

Fast generation of Gauss-Legendre quadrature nodes (x_k, w_k) due to F.J. and M. Mezzarobba (arxiv.org/abs/1802.03948).

Error bounds for Gauss-Legendre quadrature

If *f* is analytic with $|f(z)| \le M$ on an ellipse *E* with foci -1, 1 and semi-axes *X*, *Y* with $\rho = X + Y > 1$, then

 $X = 1.25, Y = 0.75, \rho = 2.00$ $X = 2.00, Y = 1.73, \rho = 3.73$

Fast convergence when no singularities are close to [a, b], but should be combined with subdivision otherwise!

Adaptive integration algorithm

1. Compute (b - a)f([a, b]). If the error is $\leq \varepsilon$, done!

- 2. On an ellipse *E* around [a, b], bound |f| and check that *f* is analytic. If the error of Gauss-Legendre quadrature is $\leq \varepsilon$, compute it done!
- 3. Split at m = (a + b)/2 and integrate on [a, m], [m, b] recursively.

Knut Petras (2002) pointed out that this guarantees rapid convergence for a large class of piecewise analytic functions.

Adaptive subdivision

$$\int_0^1 \operatorname{sech}^2(10(x-0.2)) + \operatorname{sech}^4(100(x-0.4)) + \operatorname{sech}^6(1000(x-0.6)) dx$$

Typical proper integrals

* Trick: extend piecewise real functions to the complex plane. Discontinuities \rightarrow branch cuts.

Typical improper integrals

 $N \propto$

Manual truncation required, e.g. $\int_0^\infty f(x)dx \approx \int_{\varepsilon}^N f(x)dx$ if |a|, |b| or $|f| \to \infty$

> Algebraic blow-up or decay Examples: $\int_0^1 \frac{dx}{\sqrt{x}}$, $\int_0^1 \log(x) dx$, $\int_0^\infty \frac{dx}{1+x^2}$ Complexity: $O(p^2)$

Exponential decay Example: $e^{-x} \sin(x)$ Complexity: $O(p \log p)$

Essential singularity with slow decay Example: $\int_{1}^{\infty} \frac{\sin(x)}{x} dx$ Complexity: $2^{O(p)}$

Timings: f analytic around [a, b]

p	Pari/GP	mpmath	Arb	Sub	Eval	Pari/GP	mpmath	Arb	Sub	Eval
		$I_0 = \int_0^1 1/$	$(1+x^2)dx$	x		$I_1 = \int_0^1 \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j$	$\sum_{k=1}^{3} \operatorname{sech}^{2}$	$2^{k}(10^{k}(x))$	- 0.2	(k)) dx
64	0.00039	0.0011	0.000036	2	52	0.54	5.0	0.0031	31	768
333	0.0043	0.0058	0.00017	2	188	12	38	0.023	31	3086
3333	1.0	0.13	0.012	2	2056	3385	-	5.3	31	30092
	$I_2 = 1$	$\int_0^\pi x \sin(x)$	$/(1 + \cos^2)$	(x))d	'x		$I_3 = \int_0^{100}$	$^{0}W_{0}(x)d$	'x	
64	0.00077	0.0046	0.00022	6	159	0.0037	0.032	0.00093	12	273
333	0.0088	0.037	0.0018	6	643	0.052	0.25	0.0095	12	1109
3333	2.2	4.4	0.43	6	6171	11	25	1.3	12	12043
		$I_4 = \int_0^{100}$	$\sin(x)dx$				$I_5 = \int_0^8 \operatorname{sir}$	$n(x+e^x)$	dx	
64	0.0012	0.0014	0.000070	1	72	0.063	0.25	0.0035	25	2239
333	0.015	0.018	0.00029	1	139	0.22	0.58	0.013	21	3940
3333	2.0	0.71	0.031	1	526	14	12	0.9	6	8341
	$I_6 = \int$	$e^{-1}_{-1} e^{-x} \operatorname{erf}(x)$	$(\sqrt{1250} x -$	$\left(+\frac{3}{2}\right) a$	dx		$I_7 = \int_1^{1+1}$	$\int \Gamma(x) dx$	łx	
64	0.024	0.057	0.0054	6	438	0.054	0.093	0.0046	12	324
333	0.50	0.22	0.047	4	791	0.65	1.1	0.091	14	1456
3333	173	466	5.7	2	2923	561	847	48	14	16535

Timings: endpoint singularities and infinite intervals

p	Pari/C	GΡ	mpmath	Arb	Sub	Eval	Pari/GP	mpmath	Arb	Sub	Eval
	$E_0 = \int_0^1 \sqrt{1 - x^2} dx$						$E_1 = \int_0^\infty 1/(1+x^2) dx$ *				
64	0.0004	41	0.00067	0.00057	7 44	674	0.00060	0.0012	0.0022	190	2887
333	0.0044	4	0.0060	0.015	223	12687	0.0068	0.011	0.048	997	51900
3333	0.94		0.18	6.6	2223	1.2 M	1.7	0.24	27	9997	4.7 M
	$E_2 = \int_0^1 \log(x)/(1+x)dx$ *					$E_3 = \int_0^\infty \operatorname{sech}(x) dx$ *					
64	0.0008	81	0.00094	0.0012	67	1026	0.0011	0.0043	0.00022	7	181
333	0.011		0.011	0.038	336	19254	0.013	0.098	0.0019	9	853
3333	1.7		1.08	106	3336	1.8 M	3.5	3.3	0.68	12	12046
	$E_4=\int_0^\infty e^{-x^2+ix}dx$ *						$E_5 = \int_0^\infty e^{-t}$	-xAi $(-x)$	dx *		
64	0.0014	4	0.016	0.00017	7 1	98	-	0.91	0.012	9	842
333	0.017		0.13	0.0016	2	397	-	26	0.94	124	24548
3333	4.7		7.1	0.47	4	3894	-	10167	502	1205	0.7 M

* For Arb, the path was truncated manually (with error $\leq 2^{-p}$)

Timings: mid-interval jumps/kinks

p	Arb	Sub		Eval	Arb	Sub	Eval
	$\int_0^1 $	$x^4 + 10x$	$x^3 + 19x^2 - 6x - 6 e^x $	dx		$\int_0^{100} \lceil x \rceil$	dx
64	0.0016	6 70		1093	0.014	5536	16606
333	0.049	339]	8137	0.12	33512	100534
3333	101	3339	162	24951	1.6	345512	1036534
	$\int_0^{10} (x)$	$-\lfloor x \rfloor -$	$\frac{1}{2}$)max(sin(x),cos(x)	(x))dx		\int_{-1-i}^{-1+i}	$\overline{x} dx$
64	0.026	1257]	6168	0.002	21 132	1462
333	1.2	7076	39	94881	0.067	670	28304
3333	2588	71984	3912	28525	35	6670	2669940

High accuracy with mpmath or Pari/GP is not possible without manually splitting at all the singular points.

Defining functions

The user provides the integrand f(z) as a black-box function that takes two parameters:

- A complex ball (rectangle) representing z
- A boolean flag *analytic*
 - ► *False* the function returns an enclosure of *f*(*z*). There are no assumptions about analyticity.
 - *True* the function returns an enclosure of *f*(*z*). It must return non-finite (NaN, [±∞]) if the ball *z* contains any non-analytic point of *f*.

The user can always ignore the *analytic* flag when f is a composition of meromorphic functions.

Defining functions

The *analytic* flag **must** be handled when the integrand has branch cuts.

$$\int_1^4 \sqrt{x} \, dx = \frac{14}{3}$$

sage: F2 = lambda x, a: x.sqrt(analytic=a) # correct sage: CBF.integral(F2, 1, 4) [4.6666666666666667 +/- 4.62e-14]

Versions of common functions $(\sqrt{x}, \log(x), x^y, |x|, \lfloor x \rfloor, \max(x,y), \ldots)$ with builtin branch cut detection are provided in Arb.

Optional settings for the integration algorithm

The user specifies:

- Working precision p
- Absolute and relative tolerances ε_{abs} and ε_{rel}

Configurable work limits:

- ► Maximum quadrature degree (default: *O*(*p*))
- Number of calls to the integrand (default: $O(p^2)$)
- ► Number of queued subintervals (default: *O*(*p*))
- Use stack (default) or global priority queue for the list of subintervals generated by bisection

Applications

Special functions:

$$\Gamma(s,z) = \int_z^\infty t^{s-1} e^{-t} dt$$

- (Inverse) Laplace/Fourier/Mellin transforms
- Taylor/Laurent/Fourier coefficients
- Counting zeros and poles:

$$N-P = \frac{1}{2\pi i} \oint_C \frac{f'(z)}{f(z)} \, dz$$

Acceleration of series (Euler-Maclaurin summation...)

Example: diffraction catastrophe integrals

$$P(x, y) = \int_{-\infty}^{\infty} e^{i(t^4 + yt^2 + xt)} dt = 2 \int_{0}^{\infty} e^{-t^4 + at^2 + b} \cosh(ct) dt$$

Left: 512 × 512 image rendered in 15 minutes with Arb ($|x| \le 12.5, -20 \le y \le 5$). Using doubling precision (30, 60, ... bits). Near the bottom, p = 120 is required.

Right: photo of a cusp caustic produced by illuminating a flat surface with a laser beam through a droplet of water (image credit: Dan Piponi, CC-BY-SA)

Example: Laurent series of elliptic functions

$$\wp(z;\tau) = \sum_{n=-2}^{\infty} a_n(\tau) z^n, \quad a_n = \frac{1}{2\pi i} \int_{\gamma} \frac{\wp(z)}{z^{n+1}} dz$$

 $\wp(z)$ with $\tau=i$ has poles at $z=M+Ni \quad (M,N\in\mathbb{Z}).$

One segment (n = 100):

Example: Laurent series of elliptic functions

$$\wp(z;\tau) = \sum_{n=-2}^{\infty} a_n(\tau) z^n, \quad a_n = \frac{1}{2\pi i} \int_{\gamma} \frac{\wp(z)}{z^{n+1}} dz$$

 a_{-2}, \ldots, a_{100} with 333-bit precision (0.8 seconds for each a_n):

a[-2] = [1.00000000000000 ... 00000 +/- 3.57e-98] + [+/- 1.89e-98]*I a[-1] [+/- 4.11e-98] + [+/- 2.57e-98]*I = a[0] [+/- 1.02e-97] + [+/- 5.39e-98]*I = a[1] [+/- 1.41e-97] + [+/- 1.35e-97]*I = a[2] $= [9.453636006461692 \dots 52235 + - 4.44e - 97] + [+ - 2.48e - 97] * I$ a[3] [+/- 4.47e-97] + [+/- 4.60e-97]*I = . . . a[94] = [380.000000000135 ... 63746 +/- 9.24e-70] + [+/- 8.27e-70]*I a[95] [+/- 1.37e-69] + [+/- 1.37e-69]*I = a[96] [+/- 2.93e-69] + [+/- 2.91e-69]*I = [+/- 5.81e-69] + [+/- 5.82e-69]*I a[97] = a[98] = [395.9999999999999996482...46383 +/- 2.90e-68] + [+/- 1.17e-68]*I a[99] [+/-2.32e-68] + [+/-2.32e-68]*I= a[100] = [+/- 4.95e-68] + [+/- 4.95e-68]*I

Example: an integral with a large parameter

Joint work with I. Blagouchine (arxiv.org/abs/1804.01679)

$$\zeta(s,v) = \sum_{k=0}^{\infty} \frac{1}{(k+v)^s} = \frac{1}{s-1} + \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \gamma_n(v)(s-1)^n$$
$$\gamma_n(v) = -\frac{\pi}{2(n+1)} \int_{-\infty}^{\infty} \frac{\left(\log\left(v - \frac{1}{2} + ix\right)\right)^{n+1}}{\cosh^2(\pi x)} dx$$

$$\begin{split} \gamma_{10^{100}}(1) \in & [3.18743141870239927999741646993 \pm 2.89 \cdot 10^{-30}] \cdot 10^e \\ e = & 2346394292277254080949367838399091160903447689869 \\ & 8373852057791115792156640521582344171254175433483694 \end{split}$$

Some pen-and-paper analysis (steepest descent contour, tight enclosures near saddle point) needed for large *n*.

Example: zeros of the Riemann zeta function

Number of zeros of $\zeta(s)$ on R = [0, 1] + [0, T]i:

$$N(T) - 1 = \frac{1}{2\pi i} \int_{\gamma} \frac{\zeta'(s)}{\zeta(s)} ds = \frac{\theta(T)}{\pi} + \frac{1}{\pi} \operatorname{Im}\left[\int_{1+\varepsilon}^{1+\varepsilon+Ti} \frac{\zeta'(s)}{\zeta(s)} ds + \int_{1+\varepsilon+Ti}^{\frac{1}{2}+Ti} \frac{\zeta'(s)}{\zeta(s)} ds\right]$$

Т	р	Time (s)	Eval	Sub	N(T)
10 ³	32	0.51	1219	109	[649.00000 +/- 7.78e-6]
10^{6}	32	16	5326	440	[1747146.00 +/- 4.06e-3]
10^{9}	48	1590	8070	677	[2846548032.000 +/- 1.95e-4]

Example: $|\zeta(s)|$ -integrals (from Harald Helfgott)

We compute Taylor models $f(s) = g(s) + h(s)i + \varepsilon$ on subintervals [a, a + 0.5], and integrate $\sqrt{g^2(s) + h^2(s)}$. Total time: a few hours.

Todo

- Efficient and semi-automatic support for singularities, infinite intervals
 - User may specify scale, e.g. $|f(x)| \le x^{\alpha} e^{\beta x^{\gamma}}$
 - Dedicated algorithms: Gauss-Jacobi, double exponential...
 - Algorithms for oscillatory integrals
- Symbolic interface
- Let user choose Taylor/Gauss-Legendre quadrature and bounds based on derivatives / complex magnitudes
- Better global adaptivity
- Many applications

Todo

- Efficient and semi-automatic support for singularities, infinite intervals
 - User may specify scale, e.g. $|f(x)| \le x^{\alpha} e^{\beta x^{\gamma}}$
 - Dedicated algorithms: Gauss-Jacobi, double exponential...
 - Algorithms for oscillatory integrals
- Symbolic interface
- Let user choose Taylor/Gauss-Legendre quadrature and bounds based on derivatives / complex magnitudes
- Better global adaptivity
- Many applications

Thank you!