The practical complexity of arbitrary-precision functions

Fredrik Johansson *

* Inria Bordeaux

Fundamental Algorithms and Algorithmic Complexity RTCA 2023

Institut Henri Poincaré
September 28, 2023

Introduction

Question

How quickly can we compute functions like $\exp (x)$ to n digits?
(Bit) complexity bounds quasilinear in n are classical. ${ }^{1}$ But what happens in practice?

Much more generally, how should we analyze algorithms which use n-digit numbers? Estimates like
k arithmetic operations $\rightarrow k n^{1+o(1)}$ bit operations
hide a lot of details!
${ }^{1}$ e.g. Brent, 1970s. With certain refinements in recent years.

An important unit of measurement

$$
M(n)=\text { the time to multiply two } n \text {-digit integers. }
$$

Notable algorithms:

- Basecase: $M(n)=O\left(n^{2}\right)$
- Toom-Cook: $M(n)=O\left(n^{c}\right)$ for $1<c<2$
- FFT: $M(n)=O(n \log n \ldots)$
- Schönhage-Strassen (used in GMP)
- Complex floating-point FFT
- Number-theoretic transform (NTT) $(\mathbb{Z} / p \mathbb{Z}$, word-size p)
- Harvey - van der Hoeven: $M(n)=O(n \log n)$, not yet used

Remarks:

- In typical implementations, "digit" = " 64 -bit word".
- Some bounds stated in this talk make assumptions about $M(n)$.

Timings 2 for n-word integer arithmetic

${ }^{2}$ AMD Ryzen 7 PRO 5850U, GMP 6.2, FLINT 3.0.

Things we might be able to do in the span of $M(n)$

- 3 FFTs + pointwise multiplications
- 1.5 to 2 squarings
- 1 to 2 short products (top or bottom half of the full $2 n$ words)
- 2 to 4 half-length multiplications with cost $M(n / 2)$
- $\min \left(n^{2}, 100 n\right)$ single-word operations
- $\min (n, 100)$ scalar operations $(x+y \cdot c$ with single-word $c)$
- Table lookups
- ...

Mantra

Reduce everything to multiplication. But if possible, reduce further!

Arithmetic operations and Newton iteration

Newton iteration allows approximating x / y or \sqrt{x} to n digits in time

$$
O(M(n)+M(n / 2)+M(n / 4)+\ldots)=O(M(n))
$$

Some theoretical complexity bounds in the FFT model are: ${ }^{3}$

- Reciprocal : $\sim 1.444 \ldots M(n)$
- Division: ~1.666 ...M(n)
- Square root: $\sim 1.333 \ldots M(n)$

These bounds rely on FFT tricks which so far are not widely used.
In practice one may see $\approx M(n)$ near the basecase range and $\approx 2 M(n)$ to $3 M(n)$ in the FFT range.

[^0]Timings for division and square root

Binary splitting

Important tool used to compute, for example:

- Products of small integers like N !
- Hypergeometric series like $\sum_{k=0}^{N} x^{k} / k$!

Example

The cost to compute the $N B$-digit product of B-digit integers $c_{1}, c_{2}, \ldots, c_{N}$ is bounded by

$$
M(N B / 2)+2 M(N B / 4)+4 M(N B / 8)+\ldots \approx \frac{1}{2} M(N B) \log _{2} N .
$$

In practice, binary splitting often beats such estimates. Why?

- The nonlinearity of $M(n)$ (in reality, $2^{k} M\left(n / 2^{k}\right)<M(n)$)
- Possibility of truncation when we want $n<N B$ digits
- Additional structure that can be exploited

Pi and the AGM

Most world records for π in the last 30 years (currently 10^{14} decimal digits) have used the Chudnovsky series

$$
\frac{1}{\pi}=12 \sum_{k=0}^{\infty} \frac{(-1)^{k}(6 k)!(13591409+545140134 k)}{(3 k)!(k!)^{3} \cdot 640320^{3 k+3 / 2}}
$$

which costs $O\left(M(n) \log ^{2} n\right)$ using binary splitting.
Why not use the arithmetic-geometric mean (AGM) method

$$
\begin{gathered}
\pi=\lim _{k \rightarrow \infty} \frac{\left(a_{k}+b_{k}\right)^{2}}{1-\sum_{j=0}^{k} 2^{i}\left(a_{i}-b_{i}\right)^{2}}, \\
a_{0}=1, \quad b_{k}=\frac{1}{\sqrt{2}}, \quad a_{k+1}=\frac{a_{k}+b_{k}}{2}, \quad b_{k+1}=\sqrt{a_{k} b_{k}} .
\end{gathered}
$$

which achieves $O(M(n) \log n)$?

Time to compute π

Remark: Paul Zimmermann made a similar comparison in a 2006 talk. He observed a $5 \times$ difference between the algorithms.

Elementary functions

The elementary functions have mostly analogous direct methods:

	\exp	\sin , \cos	\log	atan
Taylor series, $x \in \overline{\mathbb{Q}}$	$O(M(n) \log n)$	$O\left(M(n) \log ^{2} n\right)$		
Taylor series, $x^{N}=\varepsilon$	$O\left(\sqrt{N} M(n)+N^{1+o(1)} n\right)$			
Bit-burst	$O\left(M(n) \log ^{2} n\right)$	$O\left(M(n) \log ^{3} n\right)$		
AGM		$O(M(n) \log n)$		

Constant-factor conversions:

- $C=1+o(1)$ for $f \rightarrow f^{-1}$ via Newton iteration
- $C \approx 2-4$ for $\mathbb{R} \rightarrow \mathbb{C}$
$\exp (x) \longleftrightarrow$ Newton $\log (x)$

$$
\sin (x), \cos (x) \stackrel{\text { Newton }}{\longleftrightarrow} \operatorname{atan}(x)
$$

The AGM for elementary functions

The logarithm can be computed as

$$
\begin{gathered}
\log (x) \approx \frac{\pi}{2 \operatorname{agm}(1,4 / s)}-m \log (2), \quad s=x \cdot 2^{m}>2^{\mathrm{bits} / 2} \\
\operatorname{agm}\left(x_{0}, y_{0}\right)=\lim _{n \rightarrow \infty} x_{n}, \quad x_{n+1}=\left(x_{n}+y_{n}\right) / 2, y_{n+1}=\sqrt{x_{n} y_{n}}
\end{gathered}
$$

where π and $\log (2)$ are precomputed.

- The number of AGM iterations is $\sim 2 \log _{2}(n)$.
- We can save $O(1)$ iterations using series expansions.
- In the FFT model, an upper bound for the complexity is $\sim 4 \log _{2}(n) M(n)$ with real arithmetic (computing exp, log).
- We need complex arithmetic for trigonometric functions.

The bit-burst algorithm

Write $\exp (x)=\exp \left(x_{1}\right) \cdot \exp \left(x_{2}\right) \cdots$ where x_{i} extracts 2^{i} bits in the binary expansion of x. Use binary splitting to evaluate

$$
\exp \left(x_{i}\right) \approx \sum_{k=0}^{N_{i}} \frac{x_{i}^{k}}{k!} .
$$

Important optimization 1: do an initial argument reduction

$$
\exp (x) \rightarrow \exp \left(x / 2^{r}\right)^{2^{r}}, \quad r=o\left(\log ^{2}(n)\right)
$$

This trades the first and most expensive Taylor series for cheaper squarings. In practice, $r \approx 10-100$ varying with n.

Important optimization 2: for smallish n, just use one Taylor series, with rectangular splitting $\left(O\left(\sqrt{N} M(n)+N^{1+o(1)} n\right)\right.$ for N terms). One can make $N \rightarrow N / 2$ using $\exp (t)=s+\sqrt{s^{2}+1}, s=\sinh (t)$.

AGM vs bit-burst vs theory

Argument reduction using precomputation

There are faster ways to reduce r by a factor 2^{r} if we allow precomputations. Different tradeoffs are possible. For simplicity, we limit the reduction time to $O(M(n))$. Two example designs:

Method A: $O\left(n 2^{r}\right)$ table size, any r
Precompute $\left\{\exp \left(i / 2^{r}\right)\right\}_{i=0}^{r-1}$. Use $\exp (x)=\exp \left(i / 2^{r}\right) \exp \left(x-i / 2^{r}\right)$.
Method B: ${ }^{4} O(n r)$ table size, $r=O(\log n)$
Pick rationals $\left|q_{i}-\exp \left(2^{-i}\right)\right|<2^{-r} / r$. Precompute $\left\{\log \left(q_{i}\right)\right\}_{i=1}^{r}$.

$$
\exp (x)=\underbrace{\left(q_{1}^{b_{1}} \cdots q_{r}^{b_{r}}\right)}_{\text {Binary spliting }} \exp (x-\underbrace{\left(b_{1} \log \left(q_{1}\right)+\cdots+b_{r} \log \left(q_{r}\right)\right.}_{\text {Scalar operations }})
$$

Reduction costs $O\left(M\left(r^{2}\right) \log r+n r\right)$, so we can have $r=O(\log n)$. In practice, the optimal r initially grows more like \sqrt{n}.
${ }^{4}$ Thanks to Joris van der Hoeven for suggesting this version.

Time to compute $\exp (x)$, with table reduction to 2^{-r}

Avoiding large tables: Schönhage's method

Method C: $O(n)$ table size, $r=O(\log n)$
Precompute $\log (2)$ and $\log (3)$. Given x, compute r-bit integers c, d such that $2^{c} 3^{d} \approx \exp (x)$ within 2^{-r}.

$$
\begin{gathered}
\exp (x)=2^{c} 3^{d} \exp (x-c \log (2)-d \log (3)) \\
\text { Example: } x=\log (\pi) \\
2^{8} \cdot 3^{-4} \\
=3.16 \ldots \\
2^{1931643} \cdot 3^{-1218730} \\
2^{-3824416943916269} \cdot 3^{2412938439979599} \\
=3.141592601 \ldots \\
\end{gathered}=3.141592653589793360 \ldots .
$$

- If $r \leq \log _{2}(n)$, computing 3^{d} costs $O\left(M\left(2^{r}\right)\right)=O(M(n))$.
- If $r>\log _{2}(n)$, continued powering degenerates to full n-digit powering; we don't save anything over simply doing $x \rightarrow x / 2^{r}$.
- For trigonometric functions, use two Gaussian primes.

Multi-prime method ${ }^{5}$

Method C with ℓ primes: $O(\ell n)$ table size
Precompute $\log (2), \ldots, \log \left(p_{\ell}\right)$. Given x, compute integers c_{1}, \ldots, c_{ℓ} such that $2^{c_{1}} \cdots p_{\ell}{ }^{c_{\ell}} \approx \exp (x)$ within 2^{-r}.

$$
\exp (x)=2^{\natural} \cdots p_{\ell}^{c_{\ell}} \exp \left(x-\left(c_{1} \log (2)+\ldots+c_{\ell} \log \left(p_{\ell}\right)\right)\right)
$$

Example: $\ell=5$ and $x=\log (\pi)$

$$
\begin{array}{rll}
2^{6} \cdot 3^{4} \cdot 5^{-10} \cdot 7^{2} \cdot 11^{2} & =3.1473 \ldots \\
2^{-31} \cdot 3^{-57} \cdot 5^{136} \cdot 7^{41} \cdot 11^{-89} & =3.141592609 \ldots \\
2^{-583} \cdot 3^{3227} \cdot 5^{7718} \cdot 7^{-8681} \cdot 11^{555} & =3.14159265358979346 \ldots
\end{array}
$$

Heuristically, the exponents now only have around r / ℓ bits and computing the power product costs $O\left(M\left(2^{r / \ell} \cdot \ell^{O(1)}\right)\right)$. Heuristically, we can choose $r \propto \ell^{2}$ with $\ell \propto \log (n)$.
${ }^{5} \mathrm{~J}$. Computing elementary functions using multi-prime argument reduction, 2022

Computing smooth rational approximations

To quickly solve the inhomogeneous integer relation problem

$$
x \approx c_{1} \alpha_{1}+\ldots c_{\ell} \alpha_{\ell}
$$

precompute (using LLL, say) solutions $\varepsilon_{1}>\varepsilon_{2}>\ldots$ to the homogeneous problem $0 \approx d_{1} \alpha_{1}+\ldots d_{\ell} \alpha_{\ell}$:

$$
\left(\begin{array}{ccccc}
1 & 1 & -1 & 0 & 0 \\
0 & -1 & -2 & 1 & 1 \\
1 & 2 & -3 & 1 & 0 \\
-3 & 4 & -2 & -2 & 2 \\
-2 & 2 & 2 & -7 & 4 \\
-18 & -3 & 22 & 1 & -9 \\
19 & -23 & -22 & 1 & 19 \\
23 & -12 & 47 & 9 & -40
\end{array}\right)\left(\begin{array}{l}
\log (2) \\
\log (3) \\
\log (5) \\
\log (7) \\
\log (11)
\end{array}\right)=\left(\begin{array}{c}
0.182 \\
0.0263 \\
0.00797 \\
0.000102 \\
1.61 \cdot 10^{-5} \\
6.51 \cdot 10^{-7} \\
4.99 \cdot 10^{-8} \\
2.83 \cdot 10^{-9}
\end{array}\right)
$$

We can then build c_{1}, \ldots, c_{n} by removing $\varepsilon_{1}, \varepsilon_{2}, \ldots$ in turn from x.

Time to compute $\exp (x)$, different number of primes ℓ

Simultaneous logarithm precomputations

We can compute $\left\{\log \left(p_{1}\right), \ldots, \log \left(p_{\ell}\right)\right\}$ simultaneously using ℓ-term Machin-like formulas. ${ }^{6}$ Example for $\ell=2$:

$$
\binom{\log (2)}{\log (3)}=\left(\begin{array}{ll}
4 & 2 \\
6 & 4
\end{array}\right)\binom{\operatorname{acoth}(7)}{\operatorname{acoth}(17)}
$$

where we use binary splitting to compute

$$
\operatorname{acoth}(x)=\sum_{k=0}^{\infty} \frac{1}{(2 k+1)} \frac{1}{x^{2 k+1}}
$$

For each ℓ, all such formulas can be found using a method of Gauss.
The (conjecturally) best ℓ-term formulas up to $\ell=25$ (and $\ell=22$ for Gaussian primes) are tabulated in (J. 2022).
${ }^{6}$ So named after Machin's formula $\pi / 4=4 \operatorname{acot}(5)-\operatorname{acot}(239)$.

Best ℓ-term formulas for the first ℓ primes

ℓ	p_{1}, \ldots, p_{ℓ}	X	$\mu(X)$
1	2	3	7,17
2	2,3	$31,49,161$	2.09590
3	$2,3,5$	$251,449,4801,8749$	1.99601
4	$2, \ldots, 7$	$351,1079,4801,8749,19601$	1.31908
5	$2, \ldots, 11$	$1574,4801,8749,13311,21295,246401$	1.48088
6	$2, \ldots, 13$	$8749,21295,24751,28799,74359,388961,672281$	1.49710
7	$2, \ldots, 17$	$57799,74359,87361,388961,672281,1419263,11819521,23718421$	1.49235
8	$2, \ldots, 19$	$51744295,170918749,265326335,287080366,362074049,587270881$,	1.40768
13	$2, \ldots, 41$	$831409151,2470954914,3222617399,6926399999,9447152318,90211378321$,	
		127855050751	1.6038
25	$2, \ldots, 97$	$373632043520429,386624124661501,473599589105798,478877529936961$,	1.6038
		$523367485875499,543267330048757,666173153712219,1433006524150291$,	
		$1447605165402271,1744315135589377,1796745215731101,1814660314218751$,	
		$2236100361188849,2767427997467797,2838712971108351$,	
		$3729784979457601,4573663454608289,9747977591754401$,	
		$34305332448031249,17431549081705001,21866103101518721$,	
		19182937474703818751	

The Lehmer measure $\mu(X)=\sum_{x \in X} \frac{1}{\log _{10}(|x|)}$ is an estimate of efficiency of a Machin-like formula (lower is better).

Precomputation time, different number of primes ℓ

Assorted transcendental functions

Functions	Restriction	$O(M(n))$ complexity	Notes
Elementary		$\log n$	
Holonomic	$\nu \in \mathbb{C}$	$n^{0.5+o(1)}$	
(e.g. erf $\left.(z), J_{\nu}(z)\right)$	$\nu \in \overline{\mathbb{Q}}$	$\log ^{c} n$	7
$\Gamma(z), \psi(z)$	$z \in \mathbb{C}$	$n^{0.5+o(1)}$	8
	$z \in \overline{\mathbb{Q}}$	$\log ^{c} n$	
$\zeta(s), L(s, \chi)$	$s \in \mathbb{C}$	$n^{1+o(1)}$	
	$s \in \overline{\mathbb{Q}}$	$n^{0.5+o(1)}$	9
	$s \in \mathbb{Z}$	$\log ^{c} n$	
$\theta(z \mid \mathrm{T})$		$\log n$	10

Fun fact: all results rely on holonomic functions or the AGM.

[^1]
Time to compute $\Gamma(x)$

Time to compute $\zeta(s)$

Special points

Principle: transcendental functions can offen be evaluated faster at "special" points than at "generic" points.

- Points in $\mathbb{Z}, \mathbb{Z}\left[\frac{1}{2}\right], \mathbb{Q}$, or even $\overline{\mathbb{Q}}$ (with bit size \ll precision)
- We may have special formulas, e.g. $\zeta(2)=\pi^{2} / 6$
- Binary splitting, scalar arithmetic, ...
- Points close to singularities and special points
- Series expansions converge faster

Question

We have already seen how special points are useful in argument reduction for elementary functions. In what other situtations can we exploit special points?

Example: polynomial interpolation

Let's compute 1000 digits of

$$
\int_{0}^{1} \Gamma(1+x) d x \approx \sum_{k=1}^{N} w_{k} \Gamma\left(1+x_{k}\right)
$$

using polynomial (Lagrange) interpolation. How should we choose the N sample points to minimize the Γ-function evaluation time?

Newton-Cotes
$x_{k}=k / N$
$N=1667$
2500 digits
working precision
Gauss-Legendre
$x_{k}=$ root of P_{N}
$N=654$
Time: 0.14 s

Time: 3.02 s

Perturbed Gauss

$x_{k}=$ root of P_{N},
rounded to 53 bits

$$
N=1294
$$

Time: 0.075 s

Thank you!

[^0]: ${ }^{3}$ Table 4.1 in Brent and Zimmermann, Modern Computer Arithmetic.

[^1]: ${ }^{7}$ Chudnovsky ${ }^{2}$; van der Hoeven; Mezzarobba
 ${ }^{8}$ See survey: J., Arbitrary-precision computation of the gamma function, 2023
 ${ }^{9}$ J., Rapid computation of special values of Dirichlet L-functions, 2022
 ${ }^{10}$ Dupont; Labrande $£$ Thomé; Kieffer; Kieffer \succcurlyeq Elkies (unpublished)

