
Fungrim: The Mathematical Functions
Grimoire

Fredrik Johansson
Inria Bordeaux

FastRelax Workshop, ENS de Lyon, France
May 23, 2019

1 / 18

What is Fungrim?

http://fungrim.org

An attempt to make a better

1. reference work

2. computer algebra library

for special functions

grimoire = book of magic formulas

2 / 18

Relevant XKCD

https://xkcd.com/927/

3 / 18

My motivation

I have spent a lot of time implementing special (and general)
functions in: SymPy, mpmath, SageMath, FLINT, Arb, Nemo

What’s hard? 50 / 50:
I Finding the right formulas/theorems
I Implementation aspects

Short-term goal: collect knowledge about special functions,
present it in the form I would have found useful

Long-term goal: tools for symbolic computation and
symbolic-numeric algorithms (integration, code generation...)

4 / 18

My motivation

I have spent a lot of time implementing special (and general)
functions in: SymPy, mpmath, SageMath, FLINT, Arb, Nemo

What’s hard? 50 / 50:
I Finding the right formulas/theorems
I Implementation aspects

Short-term goal: collect knowledge about special functions,
present it in the form I would have found useful

Long-term goal: tools for symbolic computation and
symbolic-numeric algorithms (integration, code generation...)

4 / 18

Some reasons why the literature is frustrating to use

1. Vague or missing definitions

2. Conditions on variables not stated, ambiguous, or
depend on non-local context

3. The formula I want can be derived by combining
equation (43) with theorems 5 and 12... in a simple
10-page calculation, left as an exercise for the reader

4. The dreaded “≈” sign

5. Errors (typos or more serious)

6. Text text text text text text text text text text

I’m personally as guilty as anyone, on all counts

5 / 18

Some reasons why the literature is frustrating to use

1. Vague or missing definitions

2. Conditions on variables not stated, ambiguous, or
depend on non-local context

3. The formula I want can be derived by combining
equation (43) with theorems 5 and 12... in a simple
10-page calculation, left as an exercise for the reader

4. The dreaded “≈” sign

5. Errors (typos or more serious)

6. Text text text text text text text text text text

I’m personally as guilty as anyone, on all counts

5 / 18

Problems with existing reference works

dlmf.nist.gov functions.wolfram.com wikipedia.org

Open
source?

× × X

Symbolic? × X ×

Misc pros
Good presentation

(edited by experts)

Well-structured,

exhaustive

Usually

comprehensive

Misc cons
Terse, missing

useful formulas,

sometimes vague

Mathematica quirks and

bugs, sometimes ugly

formulas, missing some

categories of info

Text-heavy, much

trivia, often vague,

inconsistent

6 / 18

Content goals for Fungrim

I Formulas as symbolic, machine-readable theorems

I Functions/operators have a globally consistent meaning
(integration paths, values on branch cuts, limits, etc.)

I Formulas include full conditions of validity
(“assumptions”) for all free variables (e.g. x ∈ C \ {0})

I Comprehensive: aim for good coverage of all the common
special functions in mathematics

I Good coverage of inequalities, with explicit constants

7 / 18

Presentation goals for Fungrim

I Simple and fast to browse (including mobile!)

I Permanent ID and URL for each formula

I Beautiful formula rendering (Fungrim formula language
→ TeX→ KaTeX→HTML)

I Instant access to TeX code to copy and paste

I Instant access to symbolic representation

I Hyperlinked symbol definitions

I TODO: export to other languages, search functionality,
browsing based on metadata

8 / 18

Non-goals (for now)

Formal proofs

I Randomized testing (to be done!) should be adequate to
provide a high level of reliability

I Of course, future integration with formal proof efforts
would make sense

Fully computer-generated content

I Related: the Dynamic Dictionary of Mathematical
Functions (http://ddmf.msr-inria.inria.fr/1.9.1/ddmf)

Covering all of mathematics
I Just special functions and elements of classical analysis

9 / 18

Long-term goal: symbolic computation

Three essential parts of a computer algebra system:

1. Symbolic representation of mathematical objects

2. Mathematical algorithms / rewrite rules

3. The surrounding interface (programming language, etc.)

Idea: build an open source library of symbolic data and
rewrite rules for special functions, independent of other
features of computer algebra systems

(plus applications!)

10 / 18

Inspiration 1: Rubi by Albert D. Rich

https://rulebasedintegration.org

[Rubi] uses pattern matching to uniquely determine
which of its over 6600 integration rules to apply to a given
integrand

Rubi dramatically out-performs other symbolic integra-
tors, including Maple and Mathematica

Certainly much of analysis including equation solving,
expression simplification, differentiation, summation, lim-
its, etc. can be automated using this paradigm

11 / 18

Inspiration 2: design flaws in current computer
algebra systems

Implementations that mix/confuse abstractions
I Exhibit A: much of SageMath
I Possible solution: clear separation of concerns

Unwanted or opaque automatic “simplification”
I Possible solution: give user more control, inspection and

choice of rewrite rules

Incorrect algorithms / rewrite rules
I Algorithms that ignore conditions, simplify “modulo

special cases”
I Possible solution: track conditions and base rules on

theorems instead of wishful thinking

12 / 18

Inspiration 2: design flaws in current computer
algebra systems

Implementations that mix/confuse abstractions
I Exhibit A: much of SageMath
I Possible solution: clear separation of concerns

Unwanted or opaque automatic “simplification”
I Possible solution: give user more control, inspection and

choice of rewrite rules

Incorrect algorithms / rewrite rules
I Algorithms that ignore conditions, simplify “modulo

special cases”
I Possible solution: track conditions and base rules on

theorems instead of wishful thinking

12 / 18

Inspiration 2: design flaws in current computer
algebra systems

Implementations that mix/confuse abstractions
I Exhibit A: much of SageMath
I Possible solution: clear separation of concerns

Unwanted or opaque automatic “simplification”
I Possible solution: give user more control, inspection and

choice of rewrite rules

Incorrect algorithms / rewrite rules
I Algorithms that ignore conditions, simplify “modulo

special cases”
I Possible solution: track conditions and base rules on

theorems instead of wishful thinking

12 / 18

Inspiration 2: design flaws in current computer
algebra systems

Implementations that mix/confuse abstractions
I Exhibit A: much of SageMath
I Possible solution: clear separation of concerns

Unwanted or opaque automatic “simplification”
I Possible solution: give user more control, inspection and

choice of rewrite rules

Incorrect algorithms / rewrite rules
I Algorithms that ignore conditions, simplify “modulo

special cases”
I Possible solution: track conditions and base rules on

theorems instead of wishful thinking

12 / 18

A simple symbolic integral:
∫ 2

1 xadx

Mathematica:

13 / 18

A simple symbolic integral:
∫ 2

1 xadx

SymPy does the right thing:

>>> integrate(x**a, (x, 1, 2))

Piecewise((2**(a + 1)/(a + 1) - 1/(a + 1),

(a > -oo) & (a < oo) & Ne(a, -1)), (log(2), True))

>>> integrate(x**a, (x, 1, 2)).subs(a, -1)

log(2)

(Well, almost:)

>>> integrate(x**a, (x, 1, 2)).subs(a, I)

Traceback (most recent call last):

...

TypeError: Invalid comparison of complex I

14 / 18

A simple symbolic integral:
∫ 2

1 xadx

SymPy does the right thing:

>>> integrate(x**a, (x, 1, 2))

Piecewise((2**(a + 1)/(a + 1) - 1/(a + 1),

(a > -oo) & (a < oo) & Ne(a, -1)), (log(2), True))

>>> integrate(x**a, (x, 1, 2)).subs(a, -1)

log(2)

(Well, almost:)

>>> integrate(x**a, (x, 1, 2)).subs(a, I)

Traceback (most recent call last):

...

TypeError: Invalid comparison of complex I

14 / 18

A simple symbolic integral:
∫ 2

1 xadx

SageMath... at least tries to help, in this case:

sage: var("x a")

(x, a)

sage: integrate(x**a, x, 1, 2)

...

ValueError: Computation failed since Maxima requested

additional constraints; using the ’assume’ command

before evaluation *may* help (example of legal syntax

is ’assume(a>0)’, see ‘assume?‘ for more details)

Is a positive, negative or zero?

15 / 18

A simplification: 1F1(−1,−1, x) = ex . . . or 1 + x?

Mathematica:

SymPy:

>>> simplify(hyper([n],[m],x).subs({m:-1, n:-1, x:1}))

2

>>> simplify(hyper([n],[m],x).subs(m, n)).subs({n:-1, x:1})

E

16 / 18

Computing the wrong thing by design?

Which is better?

1. Do something fast/simple (but possibly incorrect) –
perhaps we can check the result later?

2. Do something guaranteed to be correct (but possibly
slow/complicated)

Analogy with ordinary numerics / interval arithmetic

17 / 18

Computing the wrong thing by design?

R. Corless and D. Jeffrey, “Well... It Isn’t Quite That Simple”,
ACM SIGSAM Bulletin, 1992:

The automatic exploration of conditions or alter-
native results requires considerable computational re-
sources, and for the sake of speed there is an attraction
to picking one ’obvious’ answer. [...] The difficulty is to
balance efficiency against correctness.

Something seems wrong when 27 years later, even trivial cases
don’t work by default

No new mathematical ideas are needed here, just working
from correct foundations

18 / 18

Computing the wrong thing by design?

R. Corless and D. Jeffrey, “Well... It Isn’t Quite That Simple”,
ACM SIGSAM Bulletin, 1992:

The automatic exploration of conditions or alter-
native results requires considerable computational re-
sources, and for the sake of speed there is an attraction
to picking one ’obvious’ answer. [...] The difficulty is to
balance efficiency against correctness.

Something seems wrong when 27 years later, even trivial cases
don’t work by default

No new mathematical ideas are needed here, just working
from correct foundations

18 / 18

