Fungrim: The Mathematical Functions Grimoire

Fredrik Johansson
Inria Bordeaux

FastRelax Workshop, ENS de Lyon, France
May 23, 2019

What is Fungrim?

> http://fungrim.org

An attempt to make a better

1. reference work
2. computer algebra library
for special functions
grimoire = book of magic formulas

Relevant XKCD

HOW STANDARDS PROLFERATE:
(SEE: A/C CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC)

https://xkcd.com/927/

My motivation

I have spent a lot of time implementing special (and general) functions in: SymPy, mpmath, SageMath, FLINT, Arb, Nemo

What's hard? 50 / 50:

- Finding the right formulas/theorems
- Implementation aspects

My motivation

I have spent a lot of time implementing special (and general) functions in: SymPy, mpmath, SageMath, FLINT, Arb, Nemo

What's hard? 50 / 50:

- Finding the right formulas/theorems
- Implementation aspects

Short-term goal: collect knowledge about special functions, present it in the form I would have found useful

Long-term goal: tools for symbolic computation and symbolic-numeric algorithms (integration, code generation...)

Some reasons why the literature is frustrating to use

1. Vague or missing definitions
2. Conditions on variables not stated, ambiguous, or depend on non-local context
3. The formula I want can be derived by combining equation (43) with theorems 5 and $12 \ldots$ in a simple 10-page calculation, left as an exercise for the reader
4. The dreaded " \approx " sign
5. Errors (typos or more serious)
6. Text text text text text text text text text text

Some reasons why the literature is frustrating to use

1. Vague or missing definitions
2. Conditions on variables not stated, ambiguous, or depend on non-local context
3. The formula I want can be derived by combining equation (43) with theorems 5 and $12 \ldots$ in a simple 10-page calculation, left as an exercise for the reader
4. The dreaded " \approx " sign
5. Errors (typos or more serious)
6. Text text text text text text text text text text

I'm personally as guilty as anyone, on all counts

Problems with existing reference works

dlmf.nist.gov
functions.wolfram.com

wikipedia.org

	dlmf.nist.gov	functions.wolfram.com	wikipedia.org
Open source?	\times	\times	\checkmark
Symbolic?	\times	\checkmark	\times
Misc pros	Good presentation (edited by experts)	Well-structured, exhaustive	Usually comprehensive
Misc cons	Terse, missing useful formulas, sometimes vague	Mathematica quirks and bugs, sometimes ugly formulas, missing some categories of info	Text-heavy, much trivia, often vague, inconsistent

Content goals for Fungrim

- Formulas as symbolic, machine-readable theorems
- Functions/operators have a globally consistent meaning (integration paths, values on branch cuts, limits, etc.)
- Formulas include full conditions of validity ("assumptions") for all free variables (e.g. $x \in \mathbb{C} \backslash\{0\}$)
- Comprehensive: aim for good coverage of all the common special functions in mathematics
- Good coverage of inequalities, with explicit constants

Presentation goals for Fungrim

- Simple and fast to browse (including mobile!)
- Permanent ID and URL for each formula
- Beautiful formula rendering (Fungrim formula language $\rightarrow \mathrm{TeX} \rightarrow \mathrm{KaTeX} \rightarrow$ HTML)
- Instant access to TeX code to copy and paste
- Instant access to symbolic representation
- Hyperlinked symbol definitions
- TODO: export to other languages, search functionality, browsing based on metadata

Non-goals (for now)

Formal proofs

- Randomized testing (to be done!) should be adequate to provide a high level of reliability
- Of course, future integration with formal proof efforts would make sense

Fully computer-generated content

- Related: the Dynamic Dictionary of Mathematical Functions (http://ddmf.msr-inria.inria.fr/1.9.1/ddmf)

Covering all of mathematics

- Just special functions and elements of classical analysis

Long-term goal: symbolic computation

Three essential parts of a computer algebra system:

1. Symbolic representation of mathematical objects
2. Mathematical algorithms / rewrite rules
3. The surrounding interface (programming language, etc.)

Idea: build an open source library of symbolic data and rewrite rules for special functions, independent of other features of computer algebra systems
(plus applications!)

Inspiration 1: Rubi by Albert D. Rich

https://rulebasedintegration.org
[Rubi] uses pattern matching to uniquely determine which of its over 6600 integration rules to apply to a given integrand

Rubi dramatically out-performs other symbolic integrators, including Maple and Mathematica

Certainly much of analysis including equation solving, expression simplification, differentiation, summation, limits, etc. can be automated using this paradigm

Inspiration 2: design flaws in current computer algebra systems

Inspiration 2: design flaws in current computer algebra systems

Implementations that mix/confuse abstractions

- Exhibit A: much of SageMath
- Possible solution: clear separation of concerns

Inspiration 2: design flaws in current computer algebra systems

Implementations that mix/confuse abstractions

- Exhibit A: much of SageMath
- Possible solution: clear separation of concerns

Unwanted or opaque automatic "simplification"

- Possible solution: give user more control, inspection and choice of rewrite rules

Inspiration 2: design flaws in current computer algebra systems

Implementations that mix/confuse abstractions

- Exhibit A: much of SageMath
- Possible solution: clear separation of concerns

Unwanted or opaque automatic "simplification"

- Possible solution: give user more control, inspection and choice of rewrite rules

Incorrect algorithms / rewrite rules

- Algorithms that ignore conditions, simplify "modulo special cases"
- Possible solution: track conditions and base rules on theorems instead of wishful thinking

A simple symbolic integral: $\int_{1}^{2} x^{a} d x$
Mathematica:

$$
\begin{aligned}
& \ln [5]:=\text { Integrate }\left[x^{\wedge}(-1),\{x, 1,2\}\right] \\
& \text { Out[5]= Log[2] } \\
& \left.\ln [7]:=\text { Integrate[} x^{\wedge} \mathrm{a},\{\mathrm{x}, 1,2\}\right] \\
& \text { Out }[7]=\frac{-1+2^{1+a}}{1+a} \\
& \left.\ln [8]:=\text { Integrate[} x^{\wedge} \mathrm{a},\{\mathrm{x}, 1,2\}\right] / .(\mathrm{a} \rightarrow-1) \\
& \text {... Power: Infinite expression } \frac{1}{0} \text { encountered. } \\
& \text {... Infinity : Indeterminate expression } 0 \text { ComplexInfinity encountered. } \\
& \text { Out[8]= Indeterminate }
\end{aligned}
$$

A simple symbolic integral: $\int_{1}^{2} x^{a} d x$

SymPy does the right thing:

>>> integrate(x**a, (x, 1, 2))
Piecewise ($2 * *(\mathrm{a}+1) /(\mathrm{a}+1)-1 /(\mathrm{a}+1)$,
(a > -oo) \& (a < oo) \& Ne(a, -1)), (log(2), True))
>>> integrate($\mathrm{x} * * \mathrm{a}$, (x, 1, 2)).subs(a, -1)
$\log (2)$

A simple symbolic integral: $\int_{1}^{2} x^{a} d x$

SymPy does the right thing:
>>> integrate(x**a, (x, 1, 2))
Piecewise ($2 * *(\mathrm{a}+1) /(\mathrm{a}+1)-1 /(\mathrm{a}+1)$,
(a > -oo) \& (a < oo) \& Ne(a, -1)), (log(2), True))
>>> integrate($\mathrm{x} * * \mathrm{a}$, ($\mathrm{x}, 1,2$)). subs (a, -1)
$\log (2)$
(Well, almost:)
>>> integrate(x**a, (x, 1, 2)).subs(a, I)
Traceback (most recent call last):
TypeError: Invalid comparison of complex I

A simple symbolic integral: $\int_{1}^{2} x^{a} d x$

SageMath... at least tries to help, in this case:
sage: var("x a")
(x, a)
sage: integrate(x**a, x, 1, 2)

ValueError: Computation failed since Maxima requested additional constraints; using the 'assume' command before evaluation *may* help (example of legal syntax is 'assume (a>0)', see 'assume?' for more details)
Is a positive, negative or zero?

A simplification: ${ }_{1} F_{1}(-1,-1, x)=e^{x} \ldots$ or $1+x$?

Mathematica:

$\ln [\cdot]=$ Hypergeometric1F1[n, m, 1] $I .\{m \rightarrow-1, n \rightarrow-1, x \rightarrow 1\}$
Out $[J=2$
$\ln [\cdot]:=$ (Hypergeometric1F1[n,m, x] $/ .\{m \rightarrow n\}) / .\{n \rightarrow-1, x \rightarrow 1\}$
Out $[\cdot=\boldsymbol{e}$

SymPy:

```
>>> simplify(hyper([n],[m],x).subs({m:-1, n:-1, x:1}))
2
>>> simplify(hyper([n],[m],x).subs(m, n)).subs({n:-1, x:1})
E
```


Computing the wrong thing by design?

Which is better?

1. Do something fast/simple (but possibly incorrect) perhaps we can check the result later?
2. Do something guaranteed to be correct (but possibly slow/complicated)

Analogy with ordinary numerics / interval arithmetic

Computing the wrong thing by design?

R. Corless and D. Jeffrey, "Well... It Isn't Quite That Simple", ACM SIGSAM Bulletin, 1992:

The automatic exploration of conditions or alternative results requires considerable computational resources, and for the sake of speed there is an attraction to picking one 'obvious' answer. [...] The difficulty is to balance efficiency against correctness.

Computing the wrong thing by design?

R. Corless and D. Jeffrey, "Well... It Isn't Quite That Simple", ACM SIGSAM Bulletin, 1992:

The automatic exploration of conditions or alternative results requires considerable computational resources, and for the sake of speed there is an attraction to picking one 'obvious' answer. [...] The difficulty is to balance efficiency against correctness.

Something seems wrong when 27 years later, even trivial cases don't work by default

No new mathematical ideas are needed here, just working from correct foundations

