Numerics of classical elliptic functions, elliptic integrals and modular forms

Fredrik Johansson

LFANT, Inria Bordeaux & Institut de Mathématiques de Bordeaux

KMPB Conference: Elliptic Integrals, Elliptic Functions and Modular Forms in Quantum Field Theory

> DESY, Zeuthen, Germany 24 October 2017

Introduction

Elliptic functions

- $\blacktriangleright F(z+\omega_1m+\omega_2n)=F(z), \quad m,n\in\mathbb{Z}$
- Can assume $\omega_1 = 1$ and $\omega_2 = \tau \in \mathbb{H} = \{\tau \in \mathbb{C} : \operatorname{Im}(\tau) > 0\}$

Elliptic integrals

• $\int R(x, \sqrt{P(x)}) dx$; inverses of elliptic functions

Modular forms/functions on $\mathbb H$

- ► $F(\frac{a\tau+b}{c\tau+d}) = (c\tau+d)^k F(\tau)$ for $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in PSL_2(\mathbb{Z})$
- ► Related to elliptic functions with fixed z and varying lattice parameter ω₂/ω₁ = τ ∈ ℍ

Jacobi theta functions (quasi-elliptic functions)

Used to construct elliptic and modular functions

Numerical evaluation

Lots of existing literature, software (Pari/GP, Sage, Maple, Mathematica, Matlab, Maxima, GSL, NAG, ...).

This talk will mostly review standard techniques (and many techniques will be omitted).

My goal: general purpose methods with

- Rigorous error bounds
- Arbitrary precision
- Complex variables

Implementations in the C library Arb (http://arblib.org/)

Why arbitrary precision?

Applications:

- Mitigating roundoff error for lengthy calculations
- Surviving cancellation between exponentially large terms
- High order numerical differentiation, extrapolation
- Computing discrete data (integer coefficients)
- Integer relation searches (LLL/PSLQ)
- Heuristic equality testing

Also:

• Can increase precision if error bounds are too pessimistic

Most interesting range: $10 - 10^5$ digits. (Millions, billions...?)

Ball/interval arithmetic

A real number in Arb is represented by a rigorous enclosure as a high-precision midpoint and a low-precision radius:

 $[3.14159265358979323846264338328 \pm 1.07 \cdot 10^{-30}]$

Complex numbers: $[m_1 \pm r_1] + [m_2 \pm r_2]i$.

Key points:

- Error bounds are propagated automatically
- As cheap as arbitrary-precision floating-point
- ► To compute $f(x) = \sum_{k=0}^{\infty} \Box \approx \sum_{k=0}^{N-1} \Box$ rigorously, only need analysis to bound $|\sum_{k=N}^{\infty} \Box|$
- Dependencies between variables may lead to inflated enclosures. Useful technique is to compute f([m ± r]) as [f(m) ± s] where s = |r| sup_{|x−m|≤r} |f'(x)|.

Reliable numerical evaluation

Example: $sin(\pi + 10^{-35})$ IEEE 754 double precision result: 1.2246467991473532e-16

Adaptive numerical evaluation with Arb:

64 bits: $[\pm 6.01 \cdot 10^{-19}]$ 128 bits: $[-1.0 \cdot 10^{-35} \pm 3.38 \cdot 10^{-38}]$ 192 bits: $[-1.00000000000000000 \cdot 10^{-35} \pm 1.59 \cdot 10^{-57}]$

Can be used to implement reliable floating-point functions, even if you don't use interval arithmetic externally:

Elliptic and modular functions in Arb

- ▶ *PSL*₂(ℤ) transformations and argument reduction
- Jacobi theta functions $\theta_1(z, \tau), \ldots, \theta_4(z, \tau)$
- Arbitrary z-derivatives of Jacobi theta functions
- Weierstrass elliptic functions $\wp^{(n)}(z,\tau), \wp^{-1}(z,\tau), \zeta(z,\tau), \sigma(z,\tau)$
- Modular forms and functions: $j(\tau), \eta(\tau), \Delta(\tau), \lambda(\tau), G_{2k}(\tau)$
- ► Legendre complete elliptic integrals $K(m), E(m), \Pi(n, m)$
- ► Incomplete elliptic integrals $F(\phi, m)$, $E(\phi, m)$, $\Pi(n, \phi, m)$
- Carlson incomplete elliptic integrals R_F, R_J, R_C, R_D, R_G

Possible future projects:

- The suite of Jacobi elliptic functions and integrals
- Asymptotic complexity improvements

An application: Hilbert class polynomials

For D < 0 congruent to 0 or 1 mod 4,

$$H_D(x) = \prod_{(a,b,c)} \left(x - j\left(rac{-b + \sqrt{D}}{2a}
ight)
ight) \in \mathbb{Z}[x]$$

where (a, b, c) is taken over all the primitive reduced binary quadratic forms $ax^2 + bxy + cy^2$ with $b^2 - 4ac = D$.

Example: $H_{-31} = x^3 + 39491307x^2 - 58682638134x + 1566028350940383$

Algorithms: modular, complex analytic

-D	Degree	Bits	Pari/GP	classpoly	CM	Arb
$10^{6} + 3$	105	8527	12 s	0.8 s	0.4 s	0.14 s
$10^{7} + 3$	706	50889	194 s	8 s	29 s	17 s
$10^{8} + 3$	1702	153095	1855 s	82 s	436 s	274 s

The Weierstrass zeta-function $\zeta(0.25 + 2.25i, \tau)$ as the lattice parameter τ varies over [-0.25, 0.25] + [0, 0.15]i.

The Weierstrass elliptic functions $\zeta(z, 0.25 + i)$ (left) and $\sigma(z, 0.25 + i)$ (right) as *z* varies over $[-\pi, \pi], [-\pi, \pi]i$.

The function $j(\tau)$ on the complex interval [-2, 2] + [0, 1]i.

The function $\eta(\tau)$ on the complex interval [0, 24] + [0, 1]i.

Plot of $j(\tau)$ on $[\sqrt{13}, \sqrt{13} + 10^{-101}] + [0, 2.5 \times 10^{-102}]i$.

Plot of $\eta(\tau)$ on $[\sqrt{2}, \sqrt{2} + 10^{-101}] + [0, 2.5 \times 10^{-102}]i$.

Approaches to computing special functions

- Numerical integration (integral representations, ODEs)
- Functional equations (argument reduction)
- Series expansions
- Root-finding methods (for inverse functions)
- Precomputed approximants (not applicable here)

Brute force: numerical integration

For analytic integrands, there are good algorithms that easily permit achieving 100s or 1000s of digits of accuracy:

- Gaussian quadrature
- Clenshaw-Curtis method (Chebyshev series)
- Trapezoidal rule (for periodic functions)
- Double exponential (tanh-sinh) method
- Taylor series methods (also for ODEs)

Pros:

- Simple, general, flexible approach
- Can deform path of integration as needed

Cons:

- Usually slower than dedicated methods
- Possible convergence problems (oscillation, singularities)
- Error analysis may be complicated for improper integrals

Poisson and the trapezoidal rule (historical remark)

In 1827, Poisson considered the example of the perimeter of an ellipse with axis lengths $1/\pi$ and $0.6/\pi$:

$$I = \frac{1}{2\pi} \int_0^{2\pi} \sqrt{1 - 0.36 \sin^2(\theta)} d\theta = \frac{2}{\pi} E(0.36) = 0.9027799 \dots$$

Poisson used the trapezoidal approximation

$$I pprox I_N = rac{4}{N} \sum_{k=0}^{N/4} \sqrt{1 - 0.36 \sin^2(2\pi k/N)}.$$

With N = 16 (four points!), he computed $I \approx 0.9927799272$ and proved that the error is $< 4.84 \cdot 10^{-6}$.

In fact $|I_N - I| = O(3^{-N})$. See Trefethen & Weideman, *The exponentially convergent trapezoidal rule*, 2014.

A model problem: computing exp(x)

Standard two-step numerical recipe for special functions: (not all functions fit this pattern, but surprisingly many do!)

1. Argument reduction

$$\exp(x) = \exp(x - n\log(2)) \cdot 2^n$$

$$\exp(x) = \left[\exp(x/2^R)\right]^{2^R}$$

2. Series expansion

$$\exp(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$

Step (1) ensures rapid convergence and good numerical stability in step (2).

Reducing complexity for *p*-bit precision

Principles:

- Balance argument reduction and series order optimally
- ► Exploit special (e.g. hypergeometric) structure of series

How to compute $\exp(x)$ for $x \approx 1$ with an error of 2^{-1000} ?

- Only reduction: apply $x \rightarrow x/2$ reduction 1000 times
- ▶ Only series evaluation: use 170 terms (170! > 2¹⁰⁰⁰)
- Better: apply $\lceil \sqrt{1000} \rceil = 32$ reductions and use 32 terms

This trick reduces the arithmetic complexity from p to $p^{0.5}$ (time complexity from $p^{2+\varepsilon}$ to $p^{1.5+\varepsilon}$).

With a more complex scheme, the arithmetic complexity can be reduced to $O(\log^2 p)$ (time complexity $p^{1+\varepsilon}$).

Evaluating polynomials using rectangular splitting

(Paterson and Stockmeyer 1973; Smith 1989)

 $\sum_{i=0}^{N} \Box x^{i} \text{ in } O(N) \text{ cheap steps } + O(N^{1/2}) \text{ expensive steps }$ $(\Box + \Box x + \Box x^{2} + \Box x^{3}) +$ $(\Box + \Box x + \Box x^{2} + \Box x^{3}) x^{4} +$ $(\Box + \Box x + \Box x^{2} + \Box x^{3}) x^{8} +$ $(\Box + \Box x + \Box x^{2} + \Box x^{3}) x^{12}$

This does not genuinely reduce the asymptotic complexity, but can be a huge improvement (100 times faster) in practice.

Elliptic functions

Elliptic integrals

Argument reduction

Move to standard domain (periodicity, modular transformations) Move parameters close together (various formulas)

Series expansions

Theta function *q*-series

Multivariate hypergeometric series (Appell, Lauricella...)

Special cases

Modular forms & functions, theta constants

Complete elliptic integrals, ordinary hypergeometric series (Gauss $_2F_1$)

Modular forms and functions

A modular form of weight k is a holomorphic function on $\mathbb{H} = \{\tau : \tau \in \mathbb{C}, \operatorname{Im}(\tau) > 0\}$ satisfying

$$F\left(rac{a au+b}{c au+d}
ight) = (c au+d)^k F(au)$$

for any integers a, b, c, d with ad - bc = 1. A modular function is meromorphic and has weight k = 0.

Since $F(\tau) = F(\tau + 1)$, the function has a Fourier series (or Laurent series/*q*-expansion)

$$F(\tau) = \sum_{n=-m}^{\infty} c_n e^{2i\pi n\tau} = \sum_{n=-m}^{\infty} c_n q^n, \quad q = e^{2\pi i\tau}, |q| < 1$$

Some useful functions and their *q*-expansions

Dedekind eta function

$$\begin{array}{l} \bullet \ \eta\left(\frac{a\tau+b}{c\tau+d}\right) = \varepsilon(a,b,c,d)\sqrt{c\tau+d}\eta(\tau) \\ \bullet \ \eta(\tau) = e^{\pi i\tau/12}\sum_{n=-\infty}^{\infty}(-1)^n q^{(3n^2-n)/2} \end{array}$$

The *j*-invariant

•
$$j\left(\frac{a\tau+b}{c\tau+d}\right) = j(\tau)$$

• $j(\tau) = \frac{1}{q} + 744 + 196884q + 21493760q^2 + \cdots$
• $j(\tau) = 32(\theta_2^8 + \theta_3^8 + \theta_4^8)^3/(\theta_2\theta_3\theta_4)^8$

Theta constants ($q = e^{\pi i \tau}$)

•
$$(\theta_2, \theta_3, \theta_4) = \sum_{n=-\infty}^{\infty} \left(q^{(n+1/2)^2}, q^{n^2}, (-1)^n q^{n^2} \right)$$

Due to sparseness, we only need $N = O(\sqrt{p})$ terms for *p*-bit accuracy (so the evaluation takes $p^{1.5+\varepsilon}$ time).

Argument reduction for modular forms

$$PSL_2(\mathbb{Z})$$
 is generated by $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

By repeated use of $\tau \to \tau + 1$ or $\tau \to -1/\tau$, we can move τ to the *fundamental domain* $\{\tau \in \mathbb{H} : |z| \ge 1, |\operatorname{Re}(z)| \le \frac{1}{2}\}.$

In the fundamental domain, $|q| \le \exp(-\pi\sqrt{3}) = 0.00433...$, which gives rapid convergence of the *q*-expansion.

Practical considerations

Instead of applying $F(\tau + 1) = F(\tau)$ or $F(-1/\tau) = \tau^k F(\tau)$ step by step, build transformation matrix $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and apply to Fin one step.

- This improves numerical stability
- ▶ g can usually be computed cheaply using machine floats

If computing *F* via theta constants, apply transformation for *F* instead of the individual theta constants.

Fast computation of eta and theta function *q*-series

Consider $\sum_{n=0}^{N} q^{n^2}$. More generally, $q^{P(n)}$, $P \in \mathbb{Z}[x]$ of degree 2. Naively: 2*N* multiplications.

Enge, Hart & J, Short addition sequences for theta functions, 2016:

- Optimized addition sequence for $P(0), P(1), \dots$ (2× speedup)
- Rectangular splitting: choose splitting parameter *m* so that *P* has few distinct residues mod *m* (logarithmic speedup, in practice another 2× speedup)

Schost & Nogneng, On the evaluation of some sparse polynomials, 2017:

- $N^{1/2+\varepsilon}$ method ($p^{1.25+\varepsilon}$ time complexity) using FFT
- Faster for p > 200000 in practice

Jacobi theta functions

Series expansion:

$$heta_3(z, au) = \sum_{n=-\infty}^{\infty} q^{n^2} w^{2n}, \quad q=e^{\pi i au}, w=e^{\pi i au}$$

and similarly for $\theta_1, \theta_2, \theta_4$.

The terms eventually decay rapidly (there can be an initial "hump" if |w| is large). Error bound via geometric series.

For *z*-derivatives, we compute the object $\theta(z + x, \tau) \in \mathbb{C}[[x]]$ (as a vector of coefficients) in one step.

$$\theta(z+x,\tau) = \theta(z,\tau) + \theta'(z,\tau)x + \ldots + \frac{\theta^{(r-1)}(z,\tau)}{(r-1)!}x^{r-1} + O(x^r) \in \mathbb{C}[[x]]$$

Argument reduction for Jacobi theta functions

Two reductions are necessary:

- Move τ to τ' in the fundamental domain (this operation transforms $z \to z'$, introduces some prefactors, and permutes the theta functions)
- Reduce z' modulo τ' using quasiperiodicity

General formulas for the transformation $\tau \rightarrow \tau' = \frac{a\tau+b}{c\tau+d}$ are given in (Rademacher, 1973):

$$\theta_n(z,\tau) = \exp(\pi i R/4) \cdot A \cdot B \cdot \theta_S(z',\tau')$$

$$z'=rac{-z}{c au+d}, \hspace{1em} A=\sqrt{rac{i}{c au+d}}, \hspace{1em} B=\exp\left(-\pi i c rac{z^2}{c au+d}
ight)$$

R, *S* are integers depending on *n* and (a, b, c, d). The argument reduction also applies to $\theta(z + x, \tau) \in \mathbb{C}[[x]]$.

Elliptic functions

The Weierstrass elliptic function $\wp(z,\tau) = \wp(z+1,\tau) = \wp(z+\tau,\tau)$

$$\wp(z,\tau) = rac{1}{z^2} + \sum_{n^2 + m^2 \neq 0} \left[rac{1}{(z+m+n\tau)^2} - rac{1}{(m+n\tau)^2} \right]$$

is computed via Jacobi theta functions as

$$\wp(z,\tau) = \pi^2 \theta_2^2(\mathbf{0},\tau) \theta_3^2(\mathbf{0},\tau) \frac{\theta_4^2(z,\tau)}{\theta_1^2(z,\tau)} - \frac{\pi^2}{3} \left[\theta_3^4(\mathbf{0},\tau) + \theta_3^4(\mathbf{0},\tau) \right]$$

Similarly $\sigma(z,\tau)$, $\zeta(z,\tau)$ and $\wp^{(k)}(z,\tau)$ using *z*-derivatives of theta functions.

With argument reduction for both z and τ already implemented for theta functions, reduction for \wp is unnecessary (but can improve numerical stability).

Some timings

For *d* decimal digits ($z = \sqrt{5} + \sqrt{7}i$, $\tau = \sqrt{7} + i/\sqrt{11}$):

Function	d = 10	$d = 10^{2}$	$d = 10^{3}$	$d = 10^4$	$d = 10^5$
$\exp(z)$	$7.7 \cdot 10^{-7}$	$2.94\cdot 10^{-6}$	0.000112	0.0062	0.237
$\log(z)$	$8.1 \cdot 10^{-7}$	$2.75\cdot 10^{-6}$	0.000114	0.0077	0.274
$\eta(au)$	$6.2 \cdot 10^{-6}$	$1.99\cdot 10^{-5}$	0.00037	0.0150	0.69
j(au)	$6.3\cdot10^{-6}$	$2.29\cdot 10^{-5}$	0.00046	0.0223	1.10
$(\theta_i(0,\tau))_{i=1}^4$	$7.6 \cdot 10^{-6}$	$2.67\cdot 10^{-5}$	0.00044	0.0217	1.09
$(\theta_i(z,\tau))_{i=1}^4$	$2.8 \cdot 10^{-5}$	$8.10\cdot 10^{-5}$	0.00161	0.0890	5.41
$\wp(z, au)$	$3.9\cdot10^{-5}$	0.000122	0.00213	0.113	6.55
(\wp,\wp')	$5.6 \cdot 10^{-5}$	0.000166	0.00255	0.128	7.26
$\zeta(z, au)$	$7.5 \cdot 10^{-5}$	0.000219	0.00284	0.136	7.80
$\sigma(z, au)$	$7.6 \cdot 10^{-5}$	0.000223	0.00299	0.143	8.06

Elliptic integrals

Any elliptic integral $\int R(x, \sqrt{P(x)}) dx$ can be written in terms of a small "basis set". The *Legendre forms* are used by tradition.

Complete elliptic integrals:

$$K(m) = \int_0^{\pi/2} \frac{dt}{\sqrt{1 - m\sin^2 t}} = \int_0^1 \frac{dt}{(\sqrt{1 - t^2})(\sqrt{1 - mt^2})}$$

$$E(m) = \int_0^{\pi/2} \sqrt{1 - m\sin^2 t} \, dt = \int_0^1 \frac{\sqrt{1 - mt^2}}{\sqrt{1 - t^2}} \, dt$$

$$\Pi(n, m) = \int_0^{\pi/2} \frac{dt}{(1 - n\sin^2 t)\sqrt{1 - m\sin^2 t}} = \int_0^1 \frac{dt}{(1 - nt^2)\sqrt{1 - t^2}} \sqrt{1 - mt^2}$$

Incomplete integrals:

$$\begin{aligned} F(\phi, m) &= \int_0^\phi \frac{dt}{\sqrt{1 - m\sin^2 t}} = \int_0^{\sin \phi} \frac{dt}{\left(\sqrt{1 - t^2}\right)\left(\sqrt{1 - mt^2}\right)} \\ E(\phi, m) &= \int_0^\phi \sqrt{1 - m\sin^2 t} \, dt = \int_0^{\sin \phi} \frac{\sqrt{1 - mt^2}}{\sqrt{1 - t^2}} \, dt \\ \Pi(n, \phi, m) &= \int_0^\phi \frac{dt}{(1 - n\sin^2 t)\sqrt{1 - m\sin^2 t}} = \int_0^{\sin \phi} \frac{dt}{(1 - nt^2)\sqrt{1 - t^2}\sqrt{1 - mt^2}} \end{aligned}$$

Complete elliptic integrals and $_2F_1$

The Gauss hypergeometric function is defined for |z| < 1 by

$$_{2}F_{1}(a, b, c, z) = \sum_{k=0}^{\infty} \frac{(a)_{k}(b)_{k}}{(c)_{k}} \frac{z^{k}}{k!}, \quad (x)_{k} = x(x+1)\cdots(x+k-1)$$

and elsewhere by analytic continuation. The $_2F_1$ function can be computed efficiently for any $z \in \mathbb{C}$.

$$K(m) = \frac{1}{2}\pi \,_2F_1(\frac{1}{2}, \frac{1}{2}, 1, m)$$
$$E(m) = \frac{1}{2}\pi \,_2F_1(-\frac{1}{2}, \frac{1}{2}, 1, m)$$

This works, but it's not the best way!

Complete elliptic integrals and the AGM

The AGM of *x*, *y* is the common limit of the sequences

$$a_{n+1}=rac{a_n+b_n}{2},\quad b_{n+1}=\sqrt{a_nb_n}$$

with $a_0 = x$, $b_0 = y$. As a functional equation:

$$M(x,y) = M\left(\frac{x+y}{2},\sqrt{xy}\right)$$

Each step *doubles the number of digits* in $M(x, y) \approx x \approx y$ \Rightarrow convergence in $O(\log p)$ operations ($p^{1+\varepsilon}$ time complexity).

$$K(m) = \frac{\pi}{2M(1,\sqrt{1-m})}, \quad E(m) = (1-m)(2mK'(m) + K(m))$$

Numerical aspects of the AGM

Argument reduction vs series expansion: O(1) terms only. Slightly better than reducing all the way to $|a_n - b_n| < 2^{-p}$:

$$\frac{\pi}{4K(z^2)} = \frac{1}{2} - \frac{z^2}{8} - \frac{5z^4}{128} - \frac{11z^6}{512} - \frac{469z^8}{32768} + O(z^{10})$$

Complex variables: simplify to M(z) = M(1, z) using M(x, y) = xM(1, y/x). Some case distinctions for correct square root branches in AGM iteration.

Derivatives: can use finite (central) difference for M'(z) (better method possible using elliptic integrals), higher derivatives using recurrence relations.

Incomplete elliptic integrals

Incomplete elliptic integrals are multivariate hypergeometric functions. In terms of the Appell F_1 function

$$F_1(a, b_1, b_2; c; x, y) = \sum_{m,n=0}^{\infty} \frac{(a)_{m+n}(b_1)_m(b_2)_n}{(c)_{m+n} m! n!} x^m y^n$$

where |x|, |y| < 1, we have

$$F(z,m) = \int_0^z \frac{dt}{\sqrt{1 - m\sin^2 t}} = \sin(z) F_1(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{3}{2}; \sin^2 z, m\sin^2 z)$$

Problems:

- How to reduce arguments so that $|x|, |y| \ll 1$?
- How to perform analytic continuation and obtain consistent branch cuts for complex variables?

Branch cuts of Legendre incomplete elliptic integrals

Branch cuts of F(z, m) with respect to $z \dots$

Elliptic Integrals

EllipticF[z,m]

General characteristics

Branch cuts

With respect to z

General description

For fixed *m*, the function $F(z \mid m)$ can have up to six infinite sets of branch cuts (it has at least four), which form very complicated curves in the case of generic *m*.

For fixed real m < 1, the function $F(z \mid m)$ does not have branch cuts on the real axis and on the vertical intervals $\left\{\csc^{-1}(\sqrt{m}) + \pi k, \pi - \csc^{-1}(\sqrt{m}) + \pi k\right\}/; k \in \mathbb{Z} \land m \in (-\infty, 1).$

For fixed real m < 1, the function $F(z \mid m)$ has four infinite sets of branch cuts located on vertical intervals starting at the points $z = \pi k \pm \csc^{-1}(\sqrt{m})$ /; $k \in \mathbb{Z}$ and extending to imaginary infinity.

For fixed generic m, the function $F(z \mid m)$ has the following six infinite sets of branch cuts:

1) real intervals $\left\{\pi k + \csc^{-1}(\sqrt{m}), \pi k + \frac{\pi}{2}\right\}/; k \in \mathbb{Z} \land m > 1$, where $F(z \mid m)$ is continuous from

below (for generic complex m, these branch cuts deform into complicated curves); in the case m < 1 these real intervals vanish

2) real intervals $\{\pi k + \frac{\pi}{2}, \pi (k + 1) - \csc^{-1}(\sqrt{m})\}/; k \in \mathbb{Z} \land m > 1$, where $F(z \mid m)$ is continuous from above (for generic complex *m*, these branch cuts deform into complicated curves); in the case m < 1 these real intervals vanish

3) vertical intervals
$$\left\{\frac{\pi}{2} + 2\pi k, \frac{\pi}{2} + 2\pi k + i\infty\right\}$$
 /; $k \in \mathbb{Z} \land m \notin \{0, 1\}$, or $\left\{\pi - \csc^{-1}\left\{\sqrt{m}\right\} + 2\pi k, \frac{\pi}{2} + 2\pi k + i\infty\right\}$ /; $k \in \mathbb{Z} \land m \in \{0, 1\}$, where $F(z \mid m)$ is continuous from the left 4) vertical intervals $\left\{\frac{3\pi}{2} + 2\pi k, \frac{3\pi}{2} + 2\pi k + i\infty\right\}$ /; $k \in \mathbb{Z} \land m \notin \{0, 1\}$, or

 $\left\{2\pi - \csc^{-1}(\sqrt{m}) + 2\pi k, \frac{3\pi}{2} + 2\pi k + i\infty\right\}$ /; $k \in \mathbb{Z} \land m \in (0, 1)$, where $F(z \mid m)$ is continuous from the right

5) vertical intervals
$$\left\{\frac{\pi}{2} + 2\pi k - i\infty, \frac{\pi}{2} + 2\pi k\right\}/; k \in \mathbb{Z} \land m \notin (0, 1), \text{ or}$$

 $\left\{\frac{\pi}{2} + 2\pi k - i\infty, 2\pi k + \csc^{-1}(\sqrt{m})\right\}/; k \in \mathbb{Z} \land m \in (0, 1), \text{ where } F(z \mid m) \text{ is continuous from the left}$
6) vertical intervals $\left\{\frac{3\pi}{2} + 2\pi k - i\infty, \frac{3\pi}{2} + 2\pi k\right\}/; k \in \mathbb{Z} \land m \notin (0, 1), \text{ or}$
 $\left\{\frac{3\pi}{2} + 2\pi k - i\infty, 2\pi k + \pi + \csc^{-1}(\sqrt{m})\right\}/; k \in \mathbb{Z} \land m \in (0, 1), \text{ where } F(z \mid m) \text{ is continuous from the right.}$

$$\begin{split} \mathcal{B}C_{z}(F(z\mid m)) &= \left\{ \left\{ \left\{ \left(\pi\,k + \csc^{-1}(\sqrt{m}\,), \pi\,k + \frac{\pi}{2} \right), i \right\} \right\}, k \in \mathbb{Z} \land m \in \mathbb{R} \land m > 1 \right\}, \\ \left\{ \left\{ \left\{ \pi\,k + \frac{\pi}{2}, \pi\,(k+1) - \csc^{-1}(\sqrt{m}\,) \right\}, -i \right\}, k \in \mathbb{Z} \land m \in \mathbb{R} \land m > 1 \right\}, \\ \left\{ \left\{ \left\{ 2\pi\,k + \frac{\pi}{2}, 2\,k\pi + \frac{\pi}{2} + i\,\infty \right\}, 1 \right\} \right\}, k \in \mathbb{Z} \land m \in (0, 1) \right\} \bigvee \\ \left\{ \left\{ \left\{ 2\pi\,k + \pi - \csc^{-1}(\sqrt{m}\,), 2\,k\pi + \frac{\pi}{2} + i\,\infty \right\}, 1 \right\}, k \in \mathbb{Z} \land m \in (0, 1) \right\}, \\ \left\{ \left\{ \left\{ 2\pi\,k + \frac{3\pi}{2}, 2\,k\pi + \frac{3\pi}{2} + i\,\infty \right\}, -1 \right\} \right\}, k \in \mathbb{Z} \land m \in (0, 1) \right\}, \\ \left\{ \left\{ \left\{ 2\pi\,k + 2\pi - \csc^{-1}(\sqrt{m}\,), 2\,k\pi + \frac{3\pi}{2} + i\,\infty \right\}, -1 \right\}, k \in \mathbb{Z} \land m \in (0, 1) \right\}, \\ \left\{ \left\{ \left\{ 2\pi\,k + \frac{\pi}{2} - i\,\infty, 2\,k\pi + \frac{\pi}{2} \right\}, 1 \right\}, k \in \mathbb{Z} \land m \notin (0, 1) \right\}, \\ \left\{ \left\{ \left\{ 2\pi\,k + \frac{\pi}{2} - i\,\infty, 2\,\kappa \,k + \csc^{-1}(\sqrt{m}\,) \right\}, 1 \right\}, k \in \mathbb{Z} \land m \notin (0, 1) \right\}, \\ \left\{ \left\{ \left\{ 2\pi\,k + \frac{\pi}{2} - i\,\infty, 2\,\kappa \,k + \csc^{-1}(\sqrt{m}\,) \right\}, 1 \right\}, k \in \mathbb{Z} \land m \notin (0, 1) \right\}, \\ \left\{ \left\{ \left\{ 2\pi\,k + \frac{\pi}{2} - i\,\infty, 2\,\kappa \,k + \csc^{-1}(\sqrt{m}\,) \right\}, 1 \right\}, k \in \mathbb{Z} \land m \notin (0, 1) \right\}, \\ \left\{ \left\{ \left\{ 2\pi\,k + \frac{\pi}{2} - i\,\infty, 2\,\kappa \,k + \csc^{-1}(\sqrt{m}\,) \right\}, -1 \right\}, k \in \mathbb{Z} \land m \in (0, 1) \right\}, \\ \left\{ \left\{ \left\{ 2\pi\,k + \frac{\pi}{2} - i\,\infty, 2\,\kappa \,k + \csc^{-1}(\sqrt{m}\,) \right\}, -1 \right\}, k \in \mathbb{Z} \land m \in (0, 1) \right\}, \\ \left\{ \left\{ \left\{ 2\pi\,k + \frac{\pi}{2} - i\,\infty, 2\,\kappa \,k + \csc^{-1}(\sqrt{m}\,) \right\}, -1 \right\}, k \in \mathbb{Z} \land m \in (0, 1) \right\} \right\} \end{cases}$$

٠

Formulas on real axis for real m

For m<1

For fixed real m < 1, the function $F(z \mid m)$ does not have branch cuts on the real axis.

For m>1

•

$$\lim_{\epsilon \to +0} F(x + i\epsilon \mid m) = -F(z \mid m) + \frac{2}{\sqrt{m}} K\left(\frac{1}{m}\right) + 4\left(\left|\frac{z}{\pi} - \frac{1}{2}\right| + 1\right) K(m) /;$$

$$x \in \mathbb{R} \bigwedge m \in \mathbb{R} \bigwedge m > 1 \bigwedge \pi k + \csc^{-1}(\sqrt{m}) < x < \pi k + \frac{\pi}{2} \bigwedge k \in \mathbb{Z}$$

$$\lim_{\epsilon \to +0} F(x - i\epsilon \mid m) = F(x \mid m) / ; x \in \mathbb{R} \ \bigwedge m \in \mathbb{R} \ \bigwedge m > 1 \ \bigwedge \pi k + \csc^{-1}(\sqrt{m}) < x < \pi k + \frac{\pi}{2} \ \bigwedge k \in \mathbb{Z}$$

$$\lim_{\epsilon \to +0} F(x + i \epsilon \mid m) = F(x \mid m) / ; x \in \mathbb{R} \bigwedge m \in \mathbb{R} \bigwedge m > 1 \bigwedge \frac{\pi}{2} + \pi k < x < \pi (k + 1) - \csc^{-1} \left(\sqrt{m} \right) \bigwedge k \in \mathbb{Z}$$

$$\lim_{\epsilon \to 0} F(x - i\epsilon \mid m) = -F(x \mid m) - \frac{2}{\sqrt{m}} K\left(\frac{1}{m}\right) + 4\left(\left\lfloor \frac{x}{n} - \frac{1}{2} \right\rfloor + 1\right) K(m) /;$$

$$x \in \mathbb{R} \bigwedge m \in \mathbb{R} \bigwedge m > 1 \bigwedge \pi k + \frac{\pi}{2} < x < \pi (k+1) - \csc^{-1}(\sqrt{m}) \bigwedge k \in \mathbb{Z}$$

Formulas for vertical intervals

For m<1

For fixed real m < 1, the function $F(z \mid m)$ has branch points $\csc^{-1}(\sqrt{m}) + \pi k / ; k \in \mathbb{Z}$ and

 $\pi - \csc^{-1}(\sqrt{m}) + \pi k/; k \in \mathbb{Z}$. In this case branch cuts lay at the vertical lines beginning from these points and going to imaginary infinity. By this reason for fixed real m < 1, the function $F(z \mid m)$ does not have branch cuts on the vertical intervals

For m>0

$$\lim_{\epsilon \to +0} F\left(2 \pi k + i x + \frac{\pi}{2} - \epsilon \mid m\right) = F\left(2 \pi k + i x + \frac{\pi}{2} \mid m\right) / ; x \in \mathbb{R} \land k \in \mathbb{Z}$$

$$\lim_{\epsilon \to 0} F\left(2\pi k + ix + \frac{\pi}{2} + \epsilon \mid m\right) = -F\left(ix + \frac{\pi}{2} \mid m\right) - \frac{2}{\sqrt{m}} K\left(\frac{1}{m}\right) + 4(k+1)K(m)/;$$

$$m \in \mathbb{R} \ \land x \in \mathbb{R} \ \land \left(0 < m < 1 \ \land x > -\operatorname{Im}(\operatorname{csc}^{-1}(\sqrt{m}))\right) \ \lor (m > 1 \ \land x < 0) \ \land k \in \mathbb{Z}$$

$$\lim_{\epsilon \to +0} F\left(2\pi k + ix + \frac{\pi}{2} + \epsilon \mid m\right) = -F\left(ix + \frac{\pi}{2} \mid m\right) + \frac{2}{\sqrt{m}} K\left(\frac{1}{m}\right) + 4kK(m) /;$$

$$m \in \mathbb{R} \land x \in \mathbb{R} \land \left(0 < m < 1 \land x < \operatorname{Im}\left(\operatorname{csc}^{-1}(\sqrt{m})\right) \lor m > 1 \land x > 0\right) \land k \in \mathbb{Z}$$

$$\lim_{\epsilon \to +0} F\left(2\pi k + ix + \frac{3\pi}{2} - \epsilon \mid m\right) = -F\left(ix + \frac{3\pi}{2} \mid m\right) - \frac{2}{\sqrt{m}} K\left(\frac{1}{m}\right) + 4(k+2) K(m) /;$$

$$m \in \mathbb{R} \ \land x \in \mathbb{R} \ \land \left(0 < m < 1 \ \land x > -\operatorname{Im}(\operatorname{csc}^{-1}(\sqrt{m})) \ \lor m > 1 \ \land x < 0\right) \ \land k \in \mathbb{Z}$$

$$\lim_{\epsilon \to +0} F\left(2\pi k + ix + \frac{3\pi}{2} - \epsilon \mid m\right) = -F\left(ix + \frac{3\pi}{2} \mid m\right) + \frac{2}{\sqrt{m}} K\left(\frac{1}{m}\right) + 4(k+1)K(m)/;$$

$$m \in \mathbb{R} \ \land x \in \mathbb{R} \ \land \left(0 < m < 1 \ \land x < \operatorname{Im}(\operatorname{csc}^{-1}(\sqrt{m}))\right) \ \lor m > 1 \ \land x > 0\right) \ \land k \in \mathbb{Z}$$

$$\lim_{e \to +0} F\left(2\pi k + ix + \frac{3\pi}{2} + \epsilon \mid m\right) = F\left(2\pi k + ix + \frac{3\pi}{2} \mid m\right)/; x \in \mathbb{R} \land k \in \mathbb{Z}$$

Branch cuts of F(z, m) with respect to m

EllipticF

Incomplete elliptic integral of the first kind

Mathematica Notation: EllipticF[z, m]

Traditional Notation: $F(z \mid m)$

Elliptic Integrals
EllipticF[z,m]
General characteristics
Branch cuts

With respect to m (0 formulas)

Branch cut locations: complicated.

Conclusion: the Legendre forms are not nice as building blocks.

Carlson's symmetric forms

In the 1960s, Bille C. Carlson suggested an alternative "basis set" for incomplete elliptic integrals:

$$R_F(x, y, z) = rac{1}{2} \int_0^\infty rac{dt}{\sqrt{(t+x)(t+y)(t+z)}}$$
 $R_J(x, y, z, p) = rac{3}{2} \int_0^\infty rac{dt}{(t+p)\sqrt{(t+x)(t+y)(t+z)}}$

$$R_C(x, y) = R_F(x, y, y), \quad R_D(x, y, z) = R_J(x, y, z, z)$$

Advantages:

- Symmetry unifies and simplifies transformation laws
- Symmetry greatly simplifies series expansions
- The functions have nice complex branch structure
- Simple universal algorithm for computation

Evaluation of Legendre forms

For $-\frac{\pi}{2} \leq \text{Re}(z) \leq \frac{\pi}{2}$: $F(z,m) = \sin(z) \ R_F(\cos^2(z), 1 - m\sin^2(z), 1)$ Elsewhere, use quasiperiodic extension:

$$F(z+k\pi,m) = 2kK(m) + F(z,m), \quad k \in \mathbb{Z}$$

Similarly for E(z, m) and $\Pi(n, z, m)$.

Slight complication to handle (complex) intervals straddling the lines $\operatorname{Re}(z) = (n + \frac{1}{2})\pi$.

Useful for implementations: variants with $z \rightarrow \pi z$.

Symmetric argument reduction

We have the functional equation

$$R_F(x,y,z) = R_F\left(rac{x+\lambda}{4},rac{y+\lambda}{4},rac{z+\lambda}{4}
ight)$$

where $\lambda = \sqrt{x}\sqrt{y} + \sqrt{y}\sqrt{z} + \sqrt{z}\sqrt{x}$. Each application reduces the distance between *x*, *y*, *z* by a factor 1/4.

Algorithm: apply reduction until the distance is ε , then use an order-*N* series expansion with error term $O(\varepsilon^N)$.

For *p*-bit accuracy, need p/(2N) argument reduction steps.

(A similar functional equation exists for $R_I(x, y, z, p)$.)

Series expansion when arguments are close

$$egin{aligned} R_F(x,y,z) &= R_{-1/2}\left(rac{1}{2},rac{1}{2},rac{1}{2},x,y,z
ight) \ R_J(x,y,z,p) &= R_{-3/2}\left(rac{1}{2},rac{1}{2},rac{1}{2},rac{1}{2},rac{1}{2},x,y,z,p,p
ight) \end{aligned}$$

Carlson's *R* is a multivariate hypergeometric series:

$$R_{-a}(\mathbf{b}; \mathbf{z}) = \sum_{M=0}^{\infty} \frac{(a)_M}{(\sum_{j=1}^n b_j)_M} T_M(b_1, \dots, b_n; 1 - z_1, \dots, 1 - z_n)$$

=
$$\sum_{M=0}^{\infty} \frac{z_n^{-a}(a)_M}{(\sum_{j=1}^n b_j)_M} T_M\!\left(b_1, \dots, b_{n-1}; 1 - \frac{z_1}{z_n}, \dots, 1 - \frac{z_{n-1}}{z_n}\right),$$

$$T_M(b_1,\ldots,b_n,w_1,\ldots,w_n) = \sum_{m_1+\ldots+m_n=M} \prod_{j=1}^n \frac{(b_j)_{m_j}}{(m_j)!} w_j^{m_j}$$

Note that $|T_M| \leq Const \cdot p(M) \max(|w_1|, \dots, |w_n|)^M$, so we can easily bound the tail by a geometric series.

A clever idea by Carlson: symmetric polynomials

Using elementary symmetric polynomials $E_s(w_1, \ldots, w_n)$,

$$T_M(\frac{1}{2}, \mathbf{w}) = \sum_{m_1+2m_2+\ldots+nm_n=M} (-1)^{M+\sum_j m_j} \left(\frac{1}{2}\right)_{\sum_j m_j} \prod_{j=1}^n \frac{E_j^{m_j}(\mathbf{w})}{(m_j)!}$$

We can expand *R* around the mean of the arguments, taking $w_j = 1 - z_j/A$ where $A = \frac{1}{n} \sum_{j=1}^{n} z_j$. Then $E_1 = 0$, and most of the terms disappear!

Carlson suggested expanding to M < N = 8:

$$A^{1/2}R_F(x, y, z) = 1 - \frac{E_2}{10} + \frac{E_3}{14} + \frac{E_2^2}{24} - \frac{3E_2E_3}{44} - \frac{5E_2^3}{208} + \frac{3E_3^2}{104} + \frac{E_2^2E_3}{16} + O(\varepsilon^8)$$

Need p/16 argument reduction steps for *p*-bit accuracy.

Rectangular splitting for the *R* series

The exponents of $E_2^{m_2} E_3^{m_3}$ appearing in the series for R_F are the lattice points $m_2, m_3 \in \mathbb{Z}_{\geq 0}$ with $2m_2 + 3m_3 < N$.

Compute powers of E_2 , use Horner's rule with respect to E_3 . Clear denominators so that all coefficients are small integers.

 $\Rightarrow O(N^2)$ cheap steps + O(N) expensive steps

For R_J , compute powers of E_2 , E_3 , use Horner for E_4 , E_5 .

Balancing series evaluation and argument reduction Consider *R_F*:

p = wanted precision in bits $O(\varepsilon^N)$ = error due to truncating the series expansion $O(N^2)$ = number of terms in series O(p/N) = number of argument reduction steps for $\varepsilon^N = 2^{-p}$

Overall cost $O(N^2 + p/N)$ is minimized by $N \sim p^{0.333}$, giving $p^{0.667}$ arithmetic complexity ($p^{1.667}$ time complexity).

Empirically, $N \approx 2p^{0.4}$ is optimal (due to rectangular splitting). Speedup over N = 8 at *d* digits precision:

Some timings

We include K(m) (computed by AGM), F(z, m) (computed by R_F) and the inverse Weierstrass elliptic function:

$$\wp^{-1}(z,\tau) = rac{1}{2} \int_{z}^{\infty} rac{dt}{\sqrt{(t-e_1)(t-e_2)(t-e_3)}} = R_F(z-e_1,z-e_2,z-e_3)$$

Function	d = 10	$d = 10^{2}$	$d = 10^{3}$	$d = 10^4$	$d = 10^{5}$
$\exp(z)$	$7.7\cdot10^{-7}$	$2.94\cdot 10^{-6}$	0.000112	0.0062	0.237
$\log(z)$	$8.1\cdot10^{-7}$	$2.75\cdot 10^{-6}$	0.000114	0.0077	0.274
$\eta(\tau)$	$6.2\cdot10^{-6}$	$1.99\cdot 10^{-5}$	0.00037	0.0150	0.693
K(m)	$5.4\cdot 10^{-6}$	$1.97\cdot 10^{-5}$	0.000182	0.0068	0.213
F(z, m)	$2.4\cdot 10^{-5}$	0.000114	0.0022	0.187	19.1
$\wp(z, \tau)$	$3.9\cdot 10^{-5}$	0.000122	0.00214	0.129	6.82
$\wp^{-1}(z,\tau)$	$3.1\cdot10^{-5}$	0.000142	0.00253	0.202	19.7

Quadratic transformations

It is possible to construct AGM-like methods (converging in $O(\log p)$ steps) for general elliptic integrals and functions.

Problems:

- The overhead may be slightly higher at low precision
- Correct treatment of complex variables is not obvious

Unfortunately, I have not had time to study this topic. However, see the following papers:

- ► The elliptic logarithm (≈ ℘⁻¹): John E. Cremona and Thotsaphon Thongjunthug, *The complex AGM, periods of elliptic curves over and complex elliptic logarithms*, 2013.
- Elliptic and theta functions: Hugo Labrande, Computing Jacobi's θ in quasi-linear time, 2015.