Faster arbitrary-precision dot product and matrix multiplication

Fredrik Johansson
Inria Bordeaux

26th IEEE Symposium on Computer Arithmetic (ARITH 26)
Kyoto, Japan
June 10, 2019

Arbitrary-precision arithmetic

Precision: $p \geq 2$ bits (can be thousands or millions)

- Floating-point numbers

$$
3.14159265358979323846264338328
$$

- Ball arithmetic (mid-rad interval arithmetic)

$$
\left[3.14159265358979323846264338328 \pm 8.65 \cdot 10^{-31}\right]
$$

Why?

- Computational number theory, computer algebra
- Dynamical systems, ill-conditioned problems
- Verifying/testing numerical results/methods

This work: faster arithmetic and linear algebra

CPU time (seconds) to multiply two real 1000×1000 matrices

	$p=53$	$p=106$	$p=212$	$p=848$
BLAS	0.08			
QD		11	111	
MPFR	36	44	110	293
Arb* (classical)	19	25	76	258
Arb* (block)	3.6	5.6	8.2	27

* With ball coefficients

Arb version 2.16 - http: //arblib.org

Two important requirements

- True arbitrary precision; inputs and output can have mixed precision; no restrictions on the exponents
- Preserve structure: near-optimal enclosures for each entry

$$
\left(\begin{array}{ccc}
{\left[1.23 \cdot 10^{100} \pm 10^{80}\right]} & -1.5 & 0 \\
1 & {\left[2.34 \pm 10^{-20}\right]} & {\left[3.45 \pm 10^{-50}\right]} \\
0 & 2 & {\left[4.56 \cdot 10^{-100} \pm 10^{-130}\right]}
\end{array}\right)
$$

Dot product

$$
\sum_{k=1}^{N} a_{k} b_{k}, \quad a_{k}, b_{k} \in \mathbb{R} \text { or } \mathbb{C}
$$

Kernel in basecase ($N \lesssim 10$ to 100) algorithms for:

- Matrix multiplication
- Triangular solving, recursive LU factorization
- Polynomial multiplication, division, composition
- Power series operations

Dot product as an atomic operation

The old way:

```
arb_mul(s, a, b, prec);
for (k = 1; k < N; k++)
    arb_addmul(s, a + k, b + k, prec);
```

The new way:

```
arb_dot(s, NULL, 0, a, 1, b, 1, N, prec);
```

(More generally, computes $s=s_{0}+(-1)^{c} \sum_{k=0}^{N-1} a_{k \text {.astep }} b_{k \text {-bstep }}$)
arb_dot - ball arithmetic, real
acb_dot - ball arithmetic, complex
arb_approx_dot - floating-point, real
acb_approx_dot - floating-point, complex

Numerical dot product

Approximate (floating-point) dot product:

$$
s=\sum_{k=1}^{N} a_{k} b_{k}+\varepsilon, \quad|\varepsilon| \approx 2^{-p} \sum_{k=1}^{N}\left|a_{k} b_{k}\right|
$$

Ball arithmetic dot product:

$$
\begin{gathered}
{[m \pm r] \supseteq \sum_{k=1}^{N}\left[m_{k} \pm r_{k}\right]\left[m_{k}^{\prime} \pm r_{k}^{\prime}\right]} \\
m=\sum_{k=1}^{N} m_{k} m_{k}^{\prime}+\varepsilon, \quad r \geq|\varepsilon|+\sum_{k=1}^{N}\left|m_{k}\right| r_{k}^{\prime}+\left|m_{k}^{\prime}\right| r_{k}+r_{k} r_{k}^{\prime}
\end{gathered}
$$

Representation of numbers in Arb (like MPFR)

Arbitrary-precision floating-point numbers:

$$
(-1)^{\text {sign }} \cdot 2^{\exp } \cdot \sum_{k=0}^{n-1} b_{k} 2^{64(k-n)}
$$

Limbs b_{k} are 64-bit words, normalized:

$$
0 \leq b_{k}<2^{64}, \quad b_{n-1} \geq 2^{63}, \quad b_{0} \neq 0
$$

All core arithmetic operations are implemented using word manipulations and low-level GMP (mpn layer) function calls

Radius: 30-bit unsigned floating-point

Arbitrary-precision multiplication

m limbs
n limbs

Arbitrary-precision multiplication

Exact multiplication: mpn_mul $\rightarrow m+n$ limbs
01......

Arbitrary-precision multiplication

Exact multiplication: mpn_mul $\rightarrow m+n$ limbs
01.

Rounding to p bits and bit alignment

Arbitrary-precision addition

Arbitrary-precision addition

$\vdash \begin{aligned} & \text { Exponent } \\ & \text { difference }\end{aligned} \quad$ Align limbs: mpn_1shift etc.

Arbitrary-precision addition

\vdash Exponent difference

Align limbs: mpn_lshift etc.

Addition: mpn_add_n, mpn_sub_n, mpn_add_1 etc.

Arbitrary-precision addition

$\vdash \begin{aligned} & \text { Exponent } \\ & \text { difference }\end{aligned} \quad$ Align limbs: mpn_1shift etc.

Addition: mpn_add_n, mpn_sub_n, mpn_add_1 etc.

Rounding to p bits and bit alignment

$\longmapsto \leq p$ bits

Dot product

First pass: inspect the terms

- Count nonzero terms
- Bound upper and lower exponents of terms
- Detect Inf/NaN/overflow/underflow (fallback code)

Second pass: compute the dot product!

- Exploit knowledge about exponents
- Single temporary memory allocation
- Single final rounding and normalization

Dot product

Dot product

Dot product

\vdash 2's complement accumulator -1

Error accumulator

Dot product

\vdash 2's complement accumulator \dashv

Error accumulator

Technical comments

Radius dot products (for ball arithmetic):

- Dedicated code using 64-bit accumulator

Special sizes:

- Inline ASM instead of GMP function calls for $\leq 2 \times 2$ limb product, ≤ 3 limb accumulator
- Mulder's mulhigh (via MPFR) for 25 to 10000 limbs

Complex numbers:

- Essentially done as two length-2N real dot products
- Karatsuba-style multiplication (3 instead of 4 real muls) for ≥ 128 limbs

Dot product performance

Dot product performance

Dot product: polynomial operations speedup in Arb

(Complex coefficients, $p=64$ bits)

Dot product: matrix operations speedup in Arb

(Complex coefficients, $p=64$ bits)

Matrix multiplication (large N)

Same ideas as polynomial multiplication in Arb:

1. $[A \pm a][B \pm b]$ via three multiplications $A B,|A| b, a(|B|+b)$
2. Split + scale matrices into blocks with uniform magnitude
3. Multiply blocks of A, B exactly over \mathbb{Z} using FLINT
4. Multiply blocks of $|A|, b, a,|B|+b$ using hardware FP

Matrix multiplication (large N)

Same ideas as polynomial multiplication in Arb:

1. $[A \pm a][B \pm b]$ via three multiplications $A B,|A| b, a(|B|+b)$
2. Split + scale matrices into blocks with uniform magnitude
3. Multiply blocks of A, B exactly over \mathbb{Z} using FLINT
4. Multiply blocks of $|A|, b, a,|B|+b$ using hardware FP

Where is the gain?

- Integers and hardware FP have less overhead
- Multimodular/RNS arithmetic (60-bit primes in FLINT)
- Strassen $O\left(N^{2.81}\right)$ matrix multiplication in FLINT

Matrix multiplication

Column j

Block matrix multiplication

Choose blocks A_{s}, B_{s} (indices $s \subseteq\{1, \ldots, N\}$) so that each row of A_{s} and column of B_{s} has a small internal exponent range

Column j

Block matrix multiplication, scaled to integers

Scaling is applied internally to each block A_{s}, B_{s}

$$
\text { Column } j \times 2^{f_{j, s}}
$$

$$
\begin{aligned}
E_{s} & =\operatorname{diag}\left(2^{e_{i, s}}\right), \\
F_{s} & =\operatorname{diag}\left(2^{f_{i, s}}\right)
\end{aligned}
$$

Uniform and non-uniform matrices

Uniform matrix, $N=1000$

p	Classical	Block	Number of blocks	Speedup
53	19 s	3.6 s	1	5.3
212	76 s	8.2 s	1	9.3
3392	1785 s	115 s	1	15.5

Pascal matrix, $N=1000\left(\right.$ entries $\left.A_{i, j}=\pi \cdot\binom{i+j}{j}\right)$

p	Classical	Block	Number of blocks	Speedup
53	12 s	20 s	10	0.6
212	43 s	35 s	9	1.2
3392	1280 s	226 s	2	5.7

Approximate and certified linear algebra

Three approaches to linear solving $A x=b$:

- Gaussian elimination in floating-point arithmetic: stable if A is well-conditioned
- Gaussian elimination in interval/ball arithmetic: unstable for generic well-conditioned A (lose $O(N)$ digits)
- Approx + certification: $3.141 \rightarrow[3.141 \pm 0.001]$

Example: Hansen-Smith algorithm

1. Compute $R \approx A^{-1}$ approximately
2. Solve $(R A) x=R b$ in interval/ball arithmetic

Linear solving

Solving a dense real linear system $A x=b(N=1000, p=212)$

Eigenvalues

Computing all eigenvalues and eigenvectors of a nonsymmetric complex matrix ($N=100, p=128$)

Conclusion

Faster arbitrary-precision arithmetic, linear algebra

- Handle dot product as an atomic operation, use instead of single add/muls where possible ($1-5 \times$ speedup)
- Accurate and fast large- N matrix multiplication using scaled integer blocks ($\approx 10 \times$ speedup)
- Higher operations reduce well to dot product (small N), matrix multiplication (large N)

Future work ideas

- Correctly rounded dot product, for MPFR (easy)
- Horner scheme (in analogy with dot product)
- Better matrix scaling + splitting algorithm

