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Question

Can we make computation over the fields R and C as easy and
reliable as computation over, say, Q or Fq?

Hint: there will not be a single, universal, optimal solution!
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Three levels of real arithmetic

1. Heuristic (approximations)

sin(π) ≈ 1.2246 · 10−16

2. Rigorous (enclosures)

sin(π) ∈ [0± 3.46 · 10−16]

3. Exact (symbolic and algebraic expressions)

sin(π) = 0

Example software:

• SageMath: 1. RealField, 2. RealBallField, 3. QQbar, SymbolicRing

• My libraries: 1. mpmath, 2. Arb, 3. Calcium
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Example: computing the partition function p(n)

Scene from: Brown, The Man Who Knew Infinity, 2015
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Example: “exact” symbolic arithmetic

a = 2 log(
√
2 +

√
3)− log(5 + 2

√
6)

(a = 0)

A =

(
0 a
0 0

)
B =

(
0 a+ e−1000

0 0

)

Maple 2020, SageMath 9.6’s SymbolicRing: rank(A) = 1

Mathematica 12.2: rank(B) = 0

Calcium:

>>> a = 2*log(sqrt(2)+sqrt(3)) - log(5+2*sqrt(6))

>>> A = ca_mat([[0,a],[0,0]]); A.rank()

0

>>> B = ca_mat([[0,a+exp(-1000)],[0,0]]); B.rank()

1
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Wishful thinking in real computation

Fallacy 1:

Q(a, b, c) ∼= Q(X,Y, Z).

Counterexamples:

• Q(
√
2,
√
3,
√
6) ∼= Q(X,Y, Z)/⟨X2 − 2, Y 2 − 3, XY − Z⟩1

• Q(log(
√
2 +

√
3), log(5 + 2

√
6)) ∼= Q(X,Y )/⟨2X − Y ⟩

• However Q(π) ∼= Q(X)

• Is Q(π, e) ∼= Q(X,Y ) ?

1Read Q(X)/I as Frac(Q[X]/I)
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Wishful thinking in real computation

Fallacy 2:

(|x− y| < ε) =⇒ x = y.

Counterexamples:

• 0 + exp(−1000) ̸= 0

• (exp(π
√
163)− 744)1/3

640320
̸= 1 (ε < 10−30)

•
∫ ∞

0

cos(2x)

∞∏
n=1

cos(x/n)dx ̸= π

8
(ε < 10−40)

OK if we have a rigorous lower separation bound
(e.g. Mahler-Mignotte for x, y ∈ Q).
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Wishful thinking in real computation

Fallacy 3:

“I implemented the algorithm from the book and the code compiles.
Therefore it must be correct.”
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Meta-algorithm to decide whether x = 0

1. Use rigorous numerical enclosures to attempt to prove x ̸= 0.
(If a separation bound is available, we can also prove x = 0 here.)

2. Express x in a field K = Q(α1, . . . , αn).

Guess (e.g. with LLL) an ideal I of relations on α1, . . . , αn.
Prove the relations (recursing into simpler fields).
Reduce (using Gröbner bases) x in K ′ = Q(X1, . . . , Xn)/I.

If x = 0 in K ′, we have proved that x = 0 in K.
(If we can show that K ∼= K ′, we can also prove x ̸= 0 here.)

3. Repeat with increased precision.

Theorem (Richardson): assuming Schanuel’s conjecture, a version of
this algorithm always terminates for elementary numbers (complex
numbers constructed from Q via field operations, exp, and log).
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Several practical issues

• Eager or lazy algebraic evaluation and simplification?

• How to choose generators of Q(α1, . . . , αn)? How to handle (or
avoid) extensions of high degree / large coefficients?

Example: Q(
√
2,
√
3) vs Q(

√
2 +

√
3)

Example: Q(cos(x), sin(x)) vs Q(tan(x/2)) vs Q(i, exp(ix))
Example: Q((π + 1)1000) vs Q(π)

• How to handle very large, small or close numbers numerically?

Example: exp(exp(exp(−100))) = 1?
Formal series expansions, level-index arithmetic

• Simplification of extensions (e.g. exp(log(x)/2) → √
x)

• Multivariate fraction field arithmetic, Gröbner bases
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Sample benchmark: exact algebraic computation

Time to prove x−DFT−1(DFT(x)) = 0 where x = (xn)
N−1
n=0

xn−2 N
Sage
QQbar

Sage
SR

SymPy Maple
Mathe-
matica

Calcium

n
8 0.018 0.11 1.1 0.0060 0.057 0.00016

20 0.14 172 fail 0.13 0.96 0.00045

100 8.2 fail fail 9.1 > 60 0.044
√
n

20 > 103 208 fail 1.1 2.3 0.064

100 > 103 fail fail > 103 > 60 17

log(n)
20 - 188 fail 0.74 45 0.043

100 - fail fail > 103 > 60 26

e2πi/n
20 > 103 329 fail fail > 60 0.24

100 > 103 fail fail > 103 > 60 86*

1
1+nπ

20 - 219 fail 2.4 > 60 0.12

100 - fail fail > 103 > 60 202

1
1+

√
nπ

8 - 0.76 22 0.074 2.6 0.072

20 - fail fail > 103 > 60 62
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Numerical algebraic computation over R and C

Computations in domains like R[x] and in Rn×n usually work quite
well in interval arithmetic.

We have quite good kernel operations (e.g. polynomial and matrix
multiplication) in both high precision2 and low/medium precision3.

Problems:

• Numerical instability in higher operations (e.g. inversion,
multipoint evaluation) often results in loss of O(n) digits.

Throw more precision at it or find a better algorithm?

• Handling ill-posed problems (e.g. rank(A)) without falling back
on exact computation.

2J. Faster arbitrary-precision dot product and matrix multiplication, 2019
3Example: van der Hoeven & Lecerf, Faster FFTs in medium precision, 2014
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Certification & mixed-precision methods

Useful principle:

approximate computation + posteriori certification

often performs better than a direct computation in interval arithmetic.

Example: solving Ax = b in 53-bit precision where A is a
well-conditioned real n× n matrix.

n FP Gauss Interval Gauss FP + posteriori cert.

-----------------------------------------------------------------------------

x_1 = x_1 = x_1 =

3 1.69270534084004 [1.69270534084004 ± 7e-15] [1.69270534084004 ± 7e-15]

10 2.93381472087850 [2.93381472088 ± 1e-11] [2.93381472087850 ± 5e-15]

30 4.98358363678481 [5.0 ± 0.05] [4.9835836367848 ± 2e-14]

100 9.03226736256870 [± inf] [9.0322673625687 ± 3e-14]
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Certification & mixed-precision methods

Mixed-precision arithmetic: start the computation in low precision
and finish in higher precision, e.g.

16-bit → 32-bit → 64-bit
64-bit → 128-bit → arbitrary-precision

This is classical e.g. in polynomial root-finding, and nowadays all the
rage in HPC linear algebra.

A recent application in number theory: computing modular
forms on noncongruence subgroups.

Linear system → Numerical approximations of Fourier coefficients
→ LLL → Algebraic expressions

Replacing direct arbitrary-precision solving with iterative solving using
a machine-precision preconditioner yields a 100× speedup.4

4Berghaus, Monien & Radchenko, On the computation of modular forms on
noncongruence subgroups, 2022
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Real and complex analysis

How can we compute things like f ′(x),
∫ b

a
f(x)dx or

∑∞
n=0 f(n)?
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How to represent a function?

General functions

• Black box evaluation: z 7→ f(z)

• Taylor/Chebyshev/Fourier models: f(z) = 1 + z + 0.5z2 + ε(z)

• Generalized series expansions:

f(z) =
√
2πz

(z
e

)z
(
1 +

1

12z
+ ε(z)

)

Special functions

• Functions with exact descriptions (for example, using differential,
difference, functional or algebraic equations + initial conditions)

• Potentially much more efficient than general methods

• Can have exact descriptions of singularities, special values
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Computing in the black box model

Point sampling:

Enclosures:

Interval subdivision is powerful, but can be exponentially slow. Point
sampling with error bounds (e.g. based on f (n)) is usually better.
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Polynomial approximants/models

Advantages:

• Manipulating polynomials is cheap

• High order (“spectral”) convergence

• Reduces overestimation for enclosures

Often used ad hoc. Example: the Booker-Molin method for
computing L-functions (using Fourier series).

Can also be a basis for general-purpose “computer analysis systems”,
heuristic (e.g. Chebyshev approximants in Chebfun5) or rigorous (e.g.
Taylor models in CoqInterval6).

5Trefethen et al.
6Melquiond et al.

19 / 32



Black box analysis with analytic functions

In Holomorphic World, we can get good bounds for point sampling
using only black box enclosures.

This even works for piecewise functions like ⌊exp(x)⌋ if the black box
can check “f(z) is analytic on the given complex interval for z”.

Example: integration using adaptive Gauss-Legendre + subdivision.∣∣∣∫ b

a
f(x)dx−∑n

k=1 wkf(xk)
∣∣∣ ≤ M

ρ2n
· |b− a|Cρ, |f(z)|≤ M

ρ = 2.00 ρ = 3.73

If there are singularities too close to [a, b], bisect, falling back to a
naive enclosure (b− a)f([a, b]) when [a, b] is narrow.7

7Petras, 1998 and 2002; J., 2018
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Example: the spike integral

∫ 1

0

sech2(10(x− 0.2)) + sech4(100(x− 0.4)) + sech6(1000(x− 0.6)) dx

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

Mathematica NIntegrate: 0.209736
Octave quad: 0.209736, error estimate 10−9

Sage numerical integral: 0.209736, error estimate 10−14

SciPy quad: 0.209736, error estimate 10−9

mpmath quad: 0.209819
Pari/GP intnum: 0.211316

Chebfun: 0.210803
Arb (rigorous): 0.210803

Chebfun: 0.210803
Arb (rigorous): 0.210803
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Example: the spike integral

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0

−0.2

0.0

0.2

On my laptop, Arb computes 1000 digits in 0.5 seconds
(using 8 cores), evaluating the integrand 30,000 times.
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Example: the spike integral

If the integral is written as∫ 1

0

(
1

cosh(10(x− 0.2))

)2

+

(
1

cosh(100(x− 0.4))

)4

+

(
1

cosh(1000(x− 0.6))

)6

dx

Arb takes 32 seconds, performing 2 million evaluations.

In the form∫ 1

0

1

cosh2(10(x− 0.2))
+

1

cosh4(100(x− 0.4))
+

1

cosh6(1000(x− 0.6))
dx

Arb takes 260 seconds, performing 17 million evaluations.

This kind of sensitivity is a major drawback of interval
arithmetic. Symbolic preprocessing would be very useful.
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Example: |ζ(s)|-integrals (from Harald Helfgott)

∫ −1/4+40000i

−1/4+8i

∣∣∣∣F19(s+ 1/2)F19(s+ 1)

s2

∣∣∣∣ |ds|, FN (s) = ζ(s)
∏
p≤N

(1−p−s)

10 20 30 40 50
0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035

39950 39975 40000
0
1
2
3
4
5
×10−8

We compute Taylor models f(s) = g(s) + h(s)i+ ε on subintervals

[a, a+ 0.5], and integrate
√

g2(s) + h2(s). Time: a few hours.
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Singularity analysis: improper integrals
To compute a finite limit where something goes to ∞, for example,∫ ∞

0

f(t)e−tdt,

∫ 1

0

f(t)√
t
dt,

we need to handle the singular behavior.

Options:

• Special-purpose methods (e.g. Gauss-Jacobi quadrature)

• Domain truncation

• Change of variables or integration path

• Double exponential (DE) integration

Good error bounds exist when f(t) is reasonably regular, but must be
implemented manually for each integral.

In many cases, this kind of analysis could be automated using
symbolic computation + generalized series expansions.
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Numerical limits and summation

How to compute slowly convergent series like
∑∞

n=0(−1)n/(2n+ 1)?

? sum(n=0, 10^6, (-1)^n/(2*n+1.)) / (Pi/4)

%1 = 1.0000003183095678741432200821563007512

? sumalt(n=0,(-1)^n/(2*n+1.)) / (Pi/4)

%2 = 1.0000000000000000000000000000000000000

For an excellent review of convergence
acceleration techniques, see →

• Euler-Maclaurin formula

• CVZ method

• Monien summation

• Lagrange extrapolation

• . . .

Rigorous error bounds: similar difficulty to improper integrals.
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Computing functions using integral representations

Many special functions admit elementary definite integral
representations. Random example:

Φ(z, s, a) =

∞∑
n=0

zn

(n+ a)s
=

1

Γ(s)

∫ ∞

0

ts−1e−at

1− ze−t
dt.

Direct numerical integration is usually slower than well-designed
methods based on series expansions. However, it is usually the easiest
way to cover the whole domain.

Problems:

• Choosing valid or numerically satisfactory integration paths

• Tail bounds

• Good enclosures with large parameters (may need saddle-point
analysis and series expansions)
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Special functions based on ODEs

A particularly important family of special functions: holonomic
functions (in one variable) are solutions of linear ODEs

arf
(r)(z) + · · ·+ a1f

′(z) + a0f(z) = 0

with polynomial coefficients ar, . . . , a0 ∈ C[z], ar ̸= 0.

Examples:

• exp(z), log(z), Jn(z), Γ(s, z), pFq(· · · , z)
• Inverse Mellin transforms K(z) = 1

2πi

∫
L
z−sγ(s)ds of gamma

products

Closure properties:

• αf(z) + βg(z), f(z)g(z), f ′(z),
∫ z

0
f(t)dt

• f(h(z)) where h(z) is algebraic

Non-examples: f(z)/g(z) (in general), tan(z), Γ(z), ζ(z)
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Special functions based on ODEs

Algorithmic tools for holonomic functions:8

• Closure properties are computable

• Function equality: f = g is decidable if we can decide equality of
constants

• Singularity analysis (locations, generalized series expansions)

• Rigorous numerical evaluation with low asymptotic complexity

Applications:

• Analysis of sequences via generating functions

• Symbolic definite integration and summation

• Convergence acceleration and analytic continuation

• Many techniques for computing with non-holonomic functions
(e.g. L-functions) rely on holonomic functions

8See work by Stanley, Zeilberger, Chyzak, Salvy, van der Hoeven, Mezzarobba,
and others. There are several implementations, including ore algebra in SageMath.
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Tangent: numerical evaluation of Γ(s) and Γ(s, z)

Gamma function:9

• Stirling series + re-expansion in terms of hypergeometric series

• Efficient subroutines for rising factorials, Bernoulli numbers

• Taylor series

• Approximation by Γ(s) ≈ Γ(s,N)

• Functional equations

Incomplete gamma function:
• Series expansions at z0 = 0 and z0 = ∞
• Bit-burst analytic continuation 0 → . . . → z or ∞ → . . . → z

• Numerical integration of Γ(s, z) = zse−z
∫∞
0 e−zt(1 + t)s−1dt

• Functional equations

• Application: reduced-complexity computation of L(s, χ) 10

More than 20,000 lines of code for these functions alone in Arb.
Time to consider code generation?

9J., Arbitrary-precision computation of the gamma function, 2021
10J., Rapid computation of special values of Dirichlet L-functions, 2021
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Tangent: evaluation of elementary functions

Schönhage’s idea: perform argument reduction using

exp(x) = 2m3n exp(ε), ε = x−m log(2)− n log(3).

This can be improved by using many primes.11 Example computation:
exp(

√
2− 1) to 10,000 digits. The 31-smooth approximation

e
√
2−1 =

13651 · 19463 · 37634
2274 · 3414 · 5187 · 7314 · 11211 · 17392 · 2336 · 29369 · 31231 exp(ε)

gives ε ≈ −1.57 · 10−32; we finish with holonomic methods for exp(ε).
The entire evaluation costs roughly 25 full multiplications.

Arb now uses this method for all elementary functions above 1000
digits. Empirically, it is about twice as fast as previous methods,
including the AGM.

11J., Computing elementary functions using multi-prime argument reduction, 2022
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Conclusion

There are several useful approaches to computing with real and
complex numbers (and functions). We should use all these methods
where they make the most sense.

Apart from all the usual fun algorithm optimizations for particular
operations/functions, there is a lot of room for improving integration
and accessibility of the tools.

Where we are: the user (e.g. the working mathematician) does a lot
of low-level coding to work around assorted bugs and numerical issues.

Where we should be: the user inputs a high-level mathematical
statement involving real numbers. The software automatically chooses
the appropriate low-level representation and algorithm, or at least
makes it easy to choose.
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